The Henry-Saltwater Intrusion Benchmark – Alternatives in Multiphysics Formulations and Solution Strategies

Authors

  • E Holzbecher

DOI:

https://doi.org/10.21152/1750-9548.10.1.21

Abstract

In a classical paper Henry set up a conceptual model for simulating saltwater intrusion into coastal aquifers. Up to now the problem has been taken up by software developers and modellers as a benchmark for codes simulating coupled flow and transport in porous media. The Henry test case has been treated using different numerical methods based on various formulations of differential equations. We compare several of these approaches using multiphysics software. We model the problem using Finite Elements, utilizing the primitive variables and the streamfunction approach, both with and without using the Oberbeck-Boussinesq assumption. We compare directly coupled solvers with segregated solver strategies. Changing finite element orders and mesh refinement, we find that models based on the streamfunction converge 2-4 times faster than runs based on primitive variables. Concerning the solution strategy, we find an advantage of Picard iterations compared to monolithic Newton iterations.

References

Henry, H.R., Effects of dispersion on salt water encroachment in coastal aquifers. U.-S. Geol. Survey Water-supply Paper 1613-C 1964.

Lee, C., Cheng, R.T., On seawater encroachment in coastal aquifers. Water Res. Res. 1974. 10(5): p. 1039-1043. https://doi.org/10.1029/wr010i005p01039

Frind, E.O., Simulation of long-term transient density-dependent transport in groundwater. Adv. Water Res. 1982. 5: 73-88. https://doi.org/10.1016/0309-1708(82)90049-5

Sanford, W.E., Konikow, L.F., A two-constituent solute-transport model for ground water having variable density. U.S.-Geological Survey Water-Res. Investigations Report 85-4279 1985. https://doi.org/10.3133/wri854279

Huyacorn, P.S., Mercer, J.W., Andersen, M., Seawater intrusion in coastal aquifers: theory, finite element solution and verification tests. in: Sá da Costa, A., Melo Baptista, A., Gray, W.G., Brebbia, C.A., Pinder, G.F. (eds) VI Int. Conf. on Finite Elements in Water Resources, Lisbon 1986. Proceedings, p 179-190.

Voss, C., Souza, W.R., Variable density flow and solute transport simulation of regional aquifers containing a narrow freshwater-saltwater transition zone. Water Res. Res. 1987. 23(10): p. 1851-1866. https://doi.org/10.1029/wr023i010p01851

Strobl, R.O., Yeh, G.T., Two-dimensional modeling of saltwater intrusion. in: Peters, A., Wittum, G., Herrling, B., Meissner, U., Brebbia, C.A., Gray, W.G., Pinder, G.F. (eds), Comp. Meth. in Water Res. X 1994. Proceedings 2: Kluwer Publ., Dordrecht, p. 1035-1042. https://doi.org/10.1007/978-94-010-9204-3

Croucher, A.E., O’Sullivan, M.J.O., The Henry problem for saltwater intrusion. Water Res. Res. 1995. 31(7): p. 1809-1814. https://doi.org/10.1029/95wr00431

Oldenburg, C.M., Pruess, K., Dispersive transport dynamics in a strongly coupled groundwater-brine flow system. Water Res. Res. 1995. 31(2): p. 289-302. https://doi.org/10.1029/94wr02272

Kolditz, O., Ratke, R., Diersch, H.-J., Zielke. W., Coupled groundwater flow and transport: 1. Verification of variable density flow and transport models. Adv. in Water Res. 1998. 21(1): p. 27-46. https://doi.org/10.1016/s0309-1708(96)00034-6

Holzbecher, E., Modeling Density-driven Flow in Porous Media 1998: Springer Publ., Heidelberg.

Benson, D.A., Carey, A.E., Wheatcraft, S.W., Numerical advective flux in highly variable velocity fields exemplified by saltwater intrusion. J. Contam. Hydrol. 1998. 34: p. 207-233. https://doi.org/10.1016/s0169-7722(98)00093-x

Liu, F., Turner, I., Anh, V., A finite volume unstructured mesh method for modelling saltwater intrusion into aquifer systems. 1st Int. Conf. on Saltwater Intrusion and Coastal aquifers – Monitoring, Modeling and Management, Essaouira (Marocco) 2001. https://doi.org/10.1007/bf03021549

Canot, E., de Dieuleveult, C., Erhel J., A parallel software for a saltwater intrusion problem. in: Joubert, G.R., Nagel, W.E., Peters, F.J., Plata, O., Tirado P., Zapata E. (eds) Parallel Computing:Current & Future Issues of High-End Computing 2006. NIC Series 33: p. 399-406.

Dentz, M., Tartakovsky, D.M., Abarca, E., Guadanini, A., Sanchez-Vila, X., Carrera, J., Variable density flow in porous media. J. Fluid Mech. 2006. 561: p. 209-235. https://doi.org/10.1017/s0022112006000668

Soto Meca, A., Alhama, F., González Fernández, C.F., An efficient model for solving density driven groundwater flow problems based on the network simulation method. J. of Hydrology 2007. 339(1-2), p. 39-53. https://doi.org/10.1016/j.jhydrol.2007.03.003

Grillo, A., Logashenko, D., Stichel, S., Wittum G., Simulation of density-driven flow in fractured porous media, Adv. In Water Res. 2010. 33(12): p. 1494-1507. https://doi.org/10.1016/j.advwatres.2010.08.004

Ségol, G., Groundwater Simulations - Proving and Improving Numerical Models 1994: Prentice Hall, Englewood Cliffs.

Sorek, S., Pinder, G., Survey of computer models and numerical modeling issues. in: Bear, J., Cheng, A.H.-D., Sorek, S., Herrera, I., Ouazar, D. (eds). Sea Water Intrusion in Coastal Aquifers-Concepts, Methods and Practices 1999: Kluwer Acad. Publ., Dordrecht, p. 399-461. https://doi.org/10.1007/978-94-017-2969-7

Simpson, M.J., Clement, T.P., Theoretical analysis of the worthiness of Henry and Elder problems as benchmarks of density-dependent groundwater flow models. Adv. in Water Res. 2003. 26: p. 17-31. https://doi.org/10.1016/s0309-1708(02)00085-4

Simpson, M.J., Clement, T.P., Improving the worthiness of the Henry problem as a benchmark for density-dependent groundwater flow models. Water Res. Res. 2004. 40: W01504. https://doi.org/10.1029/2003wr002199

Evans, D.G., Raffensperger, J.P., On the stream function for variable-density groundwater flow. Water Res. Res. 1992. 28( 8): p. 2141-2145. https://doi.org/10.1029/92wr01060

Nadolin, K.A., Boussinesq approximation in the Rayleigh-Benard problem. Fluid Dynamics 1995. 30(5): p. 645-651. https://doi.org/10.1007/bf02079380

Sugiyama, K., Calzavarini, E., Grossmann, S., Lohse, D., Non–Oberbeck-Boussinesq effects in two-dimensional Rayleigh-Bénard convection in glycerol. Earth Planetary Letters 2007. 80: p. 34002 1-6. https://doi.org/10.1209/0295-5075/80/34002

Ahlers, G., Calzavarini, E., Araujo, F.F., Funfschilling D., Grossmann, S,, Lohse, D., Sugiyama, K., Non-Oberbeck-Boussinesq effects in turbulent thermal convection in ethane close to the critical point. Phys. Rev. E 2008. 77: p. 046302 1-16. https://doi.org/10.1103/physreve.77.046302

COMSOL Multiphysics 3.4, 2012. COMSOL AB, Stockholm, www.comsol.com.

Bear, J., Flow through Porous Media 1972: Elsevier, New York.

Bear, J., Verruijt, A.D., Modeling Groundwater Flow and Pollution 1987: Reidel Publ., Dordrecht.

Oberbeck, A., Ueber die Wärmeleitung der Flüssigkeiten bei Berücksichtigung der Strömungen infolge von Temperaturdifferenzen. Annalen der Physik und Chemie 1879. 7: p. 271-292. https://doi.org/10.1002/andp.18792430606

Joseph, D.D., Stability of Fluid Motions II 1976: Springer Publ., Berlin.

Voss, C., SUTRA: A FE simulation model for saturated-unsaturated, Fluid-Density-Dependant Groundwater Flow with Energy Transport or Chemically-Reactive Single-Species Solute Transport. U.S. Geol. Survey, Water Resources Invest. Rep. 84-4369 1984. https://doi.org/10.3133/wri844369

Holzbecher, E., Ghyben-Herzberg equilibrium. in: Lehr, J.H., Keeley, J. (eds) The Encyclopedia of Water 2005: Wiley & Sons, Chichester.

Borisov, V., On Henry’s problem. 1997 unpublished.

Mardal, K.-A., Zumbusch, G.W., Langtangen, H.P., Software tools for multigrid methods. in: Langtangen, H.P., Tveito, A. (eds) Advanced Topics in Computational Partial Differential Equations 2003: Springer Publ., Heidelberg, p. 97-152. https://doi.org/10.1007/978-3-642-18237-2_3

Kim, Numerical studies on two-way coupled fluid flow and geomechanics in hydrate deposits, LBNL Paper LBNL-6235E 2014: 33p.

Heil, M., Hazel, ·A., Boyle, J., Solvers for large-displacement fluid–structure interaction problems: segregated versus monolithic approaches. Comput Mech, 2008. 43: p. 91–101. https://doi.org/10.1007/s00466-008-0270-6

Putti, M., Paniconi, C., Picard and Newton linearization for the coupled model of saltwater intrusion in aquifers, Adv. in Water Res. 1995. 18(3): p. 159-170. https://doi.org/10.1016/0309-1708(95)00006-5

Jänicke, L., Kost, A., Convergence properties of the Finite Element method, IEEE Transactions on Magnetics 1999. 35(3): p. 1414-1417. https://doi.org/10.1109/20.767229

Ciarlet, Ph.P., Basic error estimates for elliptic problems. in: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis II, Finite Element Methods (Part 1) 1991: North-Holland, Amsterdam, p. 17-352. https://doi.org/10.1016/s1570-8659(05)80039-0

Bradji, A., Holzbecher, E., On the convergence order of COMSOL Solutions, COMSOL Conference, Grenoble (France) 2007.

Published

2016-03-31

How to Cite

Holzbecher, E. (2016) “The Henry-Saltwater Intrusion Benchmark – Alternatives in Multiphysics Formulations and Solution Strategies”, The International Journal of Multiphysics, 10(1), pp. 21-42. doi: 10.21152/1750-9548.10.1.21.

Issue

Section

Articles