Simulation of filtration processes in deformable media Part 3.1: Basic concepts and particle-fluid force implementation of a non-spherical dirt particle solver

G Boiger, M Mataln, W Brandstätter

Abstract


A Lagrangian solver to realistically model large, non-spherical dirt particlesand their behaviour in the vicinity of deformable filtration fibres has beenprogrammed. While this paper focuses on basic solver concepts as well asdrag force implementations, a related article, concerning the realisation ofinteraction effects and result verification, is forthcoming, [3].Within the framework of a digitally reconstructed, deformable filter fibregeometry, the solver traces the governing multi physics effects down to theoccurrence of single force- and torque vectors. In order to go from an initial,spherical particle model [2], to a more sophisticated, non-spherical model,the capabilities of a Six Degrees of Freedom Solver have been included inthe programming. A panel model and the concept of satellite help points areused to handle particles that encompass several fluid calculation cells.An innovative drag force implementation allows the consideration ofrotational- and shear flow effects on particle motion. Results are evaluatedand compared to an analytical formulation.

Full Text:

PDF

References


M. Mataln, G. Boiger, W. Brandstätter, B. Gschaider, (2008). Simulation of Particle Filtration Processes in Deformable Media, Part 1: Fluid-Structure Interaction, ICE Stroemungsforschung GmbH., Montanuniversitaet Leoben. Int. Journal of Multiphysics, Vol. 2, (No. 2), July 2008, pp. 179-189(11);
Link

G. Boiger, M. Mataln, W. Brandstätter, B. Gschaider, (2008). Simulation of Particle Filtration Processes in Deformable Media, Part 2: Large Particle Modelling, ICE Stroemungsforschung GmbH., Montanuniversitaet Leoben. Int. Journal of Multiphysics, Vol. 2, (No. 2), July 2008, pp. 191-206(16)8;
Link

G. Boiger, M. Mataln, W. Brandstätter, (2009). Simulation of Particle Filtration Processes in Deformable Media, Part 3.2: Interaction modelling and solver verification of a non-spherical dirt particle solver, ICE Stroemungsforschung GmbH., Montanuniversitaet Leoben. Article in review since Jan 2009. Int. Journal of Multiphysics;


G. Boiger, M. Mataln, W. Brandstätter, (2009). Adaptive time stepping for explicit Euler implementation of spherical and non-spherical particle speed up. ICE Stroemungsforschung GmbH., Montanuniversitaet Leoben. Article in review since Jan 2009. Int. Journal of Multiphysics;


K. Thomsen, (2004). Simplified Surface area of Ellipsoid. Numericana.com, "Final Answers".

S. Schütz, M. Piesche, G. Gorbach, M. Schilling, C. Seyfert, P. Kopf, T. Deuschle, N. Sautter, E. Popp, T. Warth. (2007). CFD in der mechanischen Trenntechnik. Chemie Ingeneur Technik 2007, 79, No. II. DOI: 10.1002/cite.200700109;


S. Schütz, M. Schilling, M. Piesche. (2007). Bestimmung der Widerstandskraft und des Transportverhaltens kugelförmiger Partikel in Strömungen mit Hilfe moderner CFD-Werkzeuge. Chemie Ingeneur Technik 2007, 79, No. 12. DOI: 10.1002/cite.200700080;


L. Rosendahl. (1999). Using a multi-parameter particle shape description to predict the motion of Non-Spherical particle shapes in swirling flow. Institute of Energy Technology, Aalborg University. Applied Mathematical Modelling 24 (2000), 11-25.
CrossRef

E. Loth. (2007). Drag of non-spherical solid particles of regular and irregular shape. Department of Aerospace Engineering, University of Illinois. Powder Technology, 182 (2008), 342-353.
CrossRef

M. Mataln, W. Brandstätter, (2004). A Unified Approach to Model Fluid-Structure Interactions. Montanuniversitaet Leoben, Austria. Society of Petroleum Engineering, seminar notes, 2004.


W. J. Kowalski, W. P. Bahnfleth, T. S. Whittam, (1999). Filtration of Airborne Microorganisms: Modelling and Prediction. Pennsylvania State University, 1999. ASHRAE Transactions 105(2), 4-17. http://www.engr.psu.edu/ae/iec/abe/publications. http://www.engr.psu.edu/ae/iec/abe/publications

C. L. Cox, E. W. Jenkins, P. J. Mucha, (2005). Modelling of Debris Deposition in an Extrusion Filter Medium. Clemenson University, Clemenson, SC. Proceedings of the 21st Annual Meeting of the Polymer Processing Society, Leipzig, Germany, June 19-23, 2005.

M. Sommerfeld, (2007). Fundamentals of Particles, Droplets and Bubbles. Martin Luther Universität, Halle-Wittenberg, Germany. SIAMUF-Seminar and workshop, Chalmers University of Technology, October 2007.

C. Crowe, M. Sommerfeld, Y. Tsuji, (1998). Multiphase Flows with Droplets and Particles, Boca Raton, FL: CRC Press 1998; ISBN-10: 0849394694/0-8493-9469-4.

R. P. King. Introduction to Particle Fluid Flow, Butterworth-Heinemann; (2002).

C. S. Peskin, (2002). The immersed boundary method, Cambridge University Press, Acta Numerica 2002, pp. 1-39, DOI: 10.1017/S0962492902000077.

S. Lain, D. Bröder, & M. Sommerfeld, (1999). Experimental and numerical studies of the hydrodynamics in a bubble column. Chemical Engineering Science, 54, 4913.
CrossRef

S. Lain, & M. F. Göz, (2000). Instabilities in numerical simulations of dispersed two-phase flow. Mechanical Research Communication, 27, 475.
CrossRef

S. Lain, & M. F. Göz, (2001). Numerical instabilities in bubble tracking in two-phase flow. International Journal of Bifurcation and Chaos, 11(4), 1169.
CrossRef

S. Lain, & M. F. Göz, (2004). Study of the numerical instabilities in LaGrangian tracking of bubbles and particles in two-phase flow. Computers and Chemical Engineering 28 (2004, 2727-2733.
CrossRef

S. Lain, M. F. Göz, & M. Sommerfeld, (2006). Instabilities in LaGrangian Tracking of Bubbles and Particles in Two-Phase Flow numerical. Wiley InterScience, 52: 469-477.


A. Haider, & O. Levenspiel, (1988). Drag Coefficient and Terminal Velocity of Spherical and Non Spherical Particles. Powder Technology, 58 (1989), 63-70.
CrossRef

A. Hölzer, & M. Sommerfeld, (2007). New, simple correlation formula for the drag coefficient of Non - Spherical Particles. Martin-Luther-Universität, Halle-Wittenberg, Germany. Powder Technology, Vol. 184(3) (2007), 361-365.
CrossRef

S. V. Apte, K. Mahesh, T. Lundgren, (2003). A Eulerian-Lagrangian model to simulate twophase/particulate flows, Center for Turbulence Research, Annual Research Briefs, (2003).

W. J. Kowalski, W. P. Bahnfleth, T. S. Whittam, (1999). Filtration of Airborne Microorganisms: Modelling and Prediction. Pennsylvania State University, 1999. ASHRAE Transactions 105(2), 4-17. http://www.engr.psu.edu/ae/iec/abe/publications. http://www.engr.psu.edu/ae/iec/abe/publications

C. L. Cox, E. W. Jenkins, P. J. Mucha, (2005). Modelling of Debris Deposition in an Extrusion Filter Medium. Clemenson University, Clemenson, SC. Proceedings of the 21st Annual Meeting of the Polymer Processing Society, Leipzig, Germany, June 19-23, 2005.

G. Ahmadi, (2005). Particle Transport, Deposition & Removal II, ME637 On-line Curriculum, Potsdam, New York.




DOI: http://dx.doi.org/10.1260/1750-9548.3.4.407

Copyright (c) 2016 The International Journal of Multiphysics