CFD modelling of pressure and shear rate in torsionally vibrating structures using ANSYS CFX and COMSOL Multiphysics


  • D Brunner
  • H Khawaja
  • M Moatamedi
  • G Boiger



This paper discusses numerical methodologies to simulate micro vibrations on a nontrivial torsionally oscillating structure. The torsional structure is the tip of a viscosity-density sensor using micro vibrations to measure the fluid properties. A 2D transient simulation of the fluid domain surrounding the tip of the sensor has been conducted in ANSYS CFX and COMSOL Multiphysics software. ANSYS CFX uses a frame of reference to induce the micro vibration whereas a moving wall approach is used in COMSOL Multiphysics for the full Navier-Stokes equation as well as their linearized form. The shear rate and pressure amplitude have been compared between the different numerical approaches. The obtained results show good agreement for both pressure and shear rate amplitudes in all models.


M. Papi, G. Maulucci, G. Arcovito, P. Paoletti, M. Vassalli, and M. De Spirito, “Detection of microviscosity by using uncalibrated atomic force microscopy cantilevers,” Appl. Phys. Lett., vol. 93, no. 12, 2008.

M. K. Ghatkesar et al., “Resonating modes of vibrating microcantilevers in liquid,” Appl. Phys. Lett., vol. 92, no. 4, pp. 10–13, 2008.

M. Papi, G. Arcovito, M. De Spirito, M. Vassalli, and B. Tiribilli, “Fluid viscosity determination by means of uncalibrated atomic force microscopy cantilevers,” Appl. Phys. Lett., vol. 88, no. 19, 2006.

W. Y. Shih, X. Li, H. Gu, W. H. Shih, and I. A. Aksay, “Simultaneous liquid viscosity and density determination with piezoelectric unimorph cantilevers,” J. Appl. Phys., vol. 89, no. 2, pp. 1497–1505, 2001.

N. McLoughlin, S. L. Lee, and G. Hähner, “Simultaneous determination of density and viscosity of liquids based on resonance curves of uncalibrated microcantilevers,” Appl. Phys. Lett., vol. 89, no. 18, pp. 1–4, 2006.

M. K. Ghatkesar, E. Rakhmatullina, H. P. Lang, C. Gerber, M. Hegner, and T. Braun, “Multi-parameter microcantilever sensor for comprehensive characterization of Newtonian fluids,” Sensors Actuators, B Chem., vol. 135, no. 1, pp. 133–138, 2008.

M. Thompson, A. L. Kiplingt, and W. C. Duncan-hewitts, “Thickness-shear-mode Acoustic Wave Sensors in the Liquid Phase A Review,” vol. 116, no. September, 1991.

L. Tessler, F. Patat, N. Schmitt, G. Feuillard, and M. Thompson, “Effect of the Generation of Compressional Waves on the Response of the Thickness-Shear Mode Acoustic Wave Sensor in Liquids,” Anal. Chem., vol. 66, no. 21, pp. 3569–3574, 1994.

K. Keiji Kanazawa and J. G. Gordon, “The oscillation frequency of a quartz resonator in contact with liquid,” Anal. Chim. Acta, vol. 175, no. C, pp. 99–105, 1985.

L. Huang, J. Chen, T. Cao, H. Cong, and W. Cao, “Investigation of microtribological properties of C60-containing polymer thin films using AFM/FFM,” Wear, vol. 255, no. 7–12, pp. 826–831, 2003.

S. Kim, D. Lee, M. Yun, N. Jung, S. Jeon, and T. Thundat, “Multi-modal characterization of nanogram amounts of a photosensitive polymer,” Appl. Phys. Lett., vol. 102, no. 2, pp. 2–6, 2013.

S. Bistac, M. Schmitt, A. Ghorbal, E. Gnecco, and E. Meyer, “Nano-scale friction of polystyrene in air and in vacuum,” Polymer (Guildf)., vol. 49, no. 17, pp. 3780–3784, 2008.

F. Martin, M. I. Newton, G. McHale, K. A. Melzak, and E. Gizeli, “Pulse mode shear horizontal-surface acoustic wave (SH-SAW) system for liquid based sensing applications,” Biosens. Bioelectron., vol. 19, no. 6, pp. 627–632, 2004.

M. V. Voinova, M. Rodahl, M. Jonson, and B. Kasemo, “Viscoelastic acoustic response of layered polymer films at fluid-solid interfaces: Continuum mechanics approach,” 1998.

R. Lucklum, C. Behling, R. W. Cernosek, and S. J. Martin, “Determination of complex shear modulus with thickness shear mode resonators,” J. Phys. D. Appl. Phys., vol. 30, no. 3, pp. 346–356, 1997.

J. Xie and Y. Hu, “A two-dimensional model on the coupling thickness-shear vibrations of a quartz crystal resonator loaded by an array spherical-cap viscoelastic material units,” Ultrasonics, vol. 71, pp. 194–198, 2016.

S. Dohn, O. Hansen, and A. Boisen, “Cantilever based mass sensor with hard contact readout,” Appl. Phys. Lett., vol. 88, no. 26, pp. 1–4, 2006.

H. P. Lang, M. Hegner, and C. Gerber, “Cantilever Array Sensors for Bioanalysis and Diagnostics,” Nanobiotechnology II More Concepts Appl., vol. 8, no. 4, pp. 175–195, 2007.

R. Datar, A. Passian, R. Desikan, and T. Thundat, “Microcantilever biosensors,” Proc. IEEE Sensors, vol. 37, no. 2005, p. 5, 2007.

A. I. Fedorchenko, I. Stachiv, and W.-C. Wang, “Method of the viscosity measurement by means of the vibrating micro-/nano-mechanical resonators,” Flow Meas. Instrum., vol. 32, pp. 84–89, 2013.

L. Qin, H. Cheng, J. M. Li, and Q. M. Wang, “Characterization of polymer nanocomposite films using quartz thickness shear mode (TSM) acoustic wave sensor,” Sensors Actuators, A Phys., vol. 136, no. 1, pp. 111–117, 2007.



How to Cite

Brunner, D., Khawaja, H., Moatamedi, M. and Boiger, G. (2018) “CFD modelling of pressure and shear rate in torsionally vibrating structures using ANSYS CFX and COMSOL Multiphysics”, The International Journal of Multiphysics, 12(4), pp. 349-358. doi: 10.21152/1750-9548.12.4.349.




Most read articles by the same author(s)

1 2 3 4 5 > >>