Lagrangian model using CFD flow data to predict the currentvoltage characteristics of a solid oxide fuel cell repeat unit


  • C Meier
  • D Meier
  • F Vandercruysse
  • T Hocker



A model framework is presented to predict the current-voltage (I-U) characteristics and hence the electrical performance of a solid oxide fuel cell (SOFC) repeat unit, i. e., a planar SOFC with adjacent current collector plates. The model uses as input residence times obtained from 3D CFD data for the fuel flowing through the anodic gas channels of a current collector plate. These residence times are then used by an electrochemical model to predict the fuel conversion along different flow paths for various electrical loads. This way, the overall (I-U) behaviour of the repeat unit follows from combining the fuel conversion rates (and respective electrical currents) for the individual flow paths. Since we use a Lagrangian reference frame for the electrochemical model, for a given electrical load, only a simple time-integration of a first-order ODE is required. Therefore, this modelling approach is very efficient and well suited for extensive parameter studies, e. g., to optimise the fuel residence times with respect to the electrical performance of the repeat unit. To ensure its reliability, the model has been validated by comparison with both experimental data and other (I-U) models.


K. Kendall and M. Kendall, High-Temperature Solid Oxide Fuel Cells for the 21st Century: Fundamentals, Design and Applications, Elsevier Science (2016).

A. Mai, B. Iwanschitz, J. A. Schuler, R. Denzler, V. Nerlich, A. Schuler, ”HEXIS’ SOFC System Galileo 1000 N – Lab and Field Test Experiences“, ECS Transactions, 57, pp. 73–80 (2013).

M. Schulze, E. Gülzow, St. Schönbauer, T. Knöri, R. Reissner, ”Segmented cells as tool for development of fuel cells and error prevention/prediagnostic in fuel cell stacks“, Journal of Power Sources, 173, pp. 19–27 (2007).

Z. Wuillemin, A. Nakajo, A. Müller, A. Schuler, S. Diethelm, J. Van Herle, D. Favrat, ”Locally-Resolved Study of Degradation in a SOFC Repeat- Element“, ECS Transactions, 25, pp. 457–466 (2009).

W. G. Bessler S. Gewies C. Willich G. Schiller K. A. Friedrich, ”Spatial Distribution of Electrochemical Performance in a Segmented SOFC: A Combined Modeling and Experimental Study“, Fuel Cells, 10, pp. 411–418 (2010).

V. M. Janardhanan, O. Deutschmann, ”CFD analysis of a solid oxide fuel cell with internal reforming: Coupled interactions of transport, heterogeneous catalysis and electrochemical processes“, Journal of Power Sources, 162, pp. 1192–1202 (2006).

J. O. Schumacher, J. Eller, G. Sartoris, T. Colinart, B. C. Seyfang, ”2+1D modelling of a polymer electrolyte fuel cell with glassy-carbon microstructures“, Mathematical and Computer Modelling of Dynamical Systems, 18, pp. 355–377 (2012).

D. Sang-Keun, J. Woo-Nam, R. Kashif, K. Akiyoshi, ”Design and numerical analysis of a planar anode-supported SOFC stack“, Renewable Energy, 94, pp. 637–650 (2016).

M. Linder, T. Hocker, C. Meier, L. Holzer, K. A. Friedrich, B. Iwanschitz, A. Mai, J. A. Schuler, ”A model-based approach for current voltage analyses to quantify degradation and fuel distribution in solid oxide fuel cell stacks“, Journal of Power Sources, 288, pp. 409–418 (2015).

M. Linder, T. Hocker, R. Denzler, A. Mai, B. Iwanschitz, ”Automated, Model-Based Analysis of Uj-Data for Electrolyte-Supported SOFC Short-Stacks“, Fuel Cells, 11, pp. 573—580 (2011).

D. G. Goodwin, H. K. Moffat, and R. L. Speth. Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes (2018).

M. V. Twigg, Catalyst Handbook, second edition, Wolfe Publishing Ltd. (1989).

Wolfram Research Inc., Mathematica, Version 11.2, Champaign, IL (2018).

ANSYS Inc., ANSYS CFX Release 18, Canonsburg, PA (2018).



How to Cite

Meier, C., Meier, D., Vandercruysse, F. and Hocker, T. (2018) “Lagrangian model using CFD flow data to predict the currentvoltage characteristics of a solid oxide fuel cell repeat unit”, The International Journal of Multiphysics, 12(4), pp. 393-412. doi: 10.21152/1750-9548.12.4.393.