Behaviour of cellular structures with fluid fillers under impact loading

Matej Vesenjak, Andreas Öchsner, Matjaz Hribersek, Zoran Ren

Abstract


The paper investigates the behaviour of closed- and open-cell cellular structures under uniaxial impact loading by means of computational simulations using the explicit nonlinear finite element code LS-DYNA. Simulations also consider the influence of pore fillers and the base material strain rate sensitivity. The behaviour of closed-cell cellular structure has been evaluated with use of the representative volume element, where the influence of residual gas inside the closed pores has been studied. Open- cell cellular structure was modelled as a whole to properly account for considered fluid flow through the cells, which significantly influences macroscopic behaviour of the cellular structure. The fluid has been modelled by applying a meshless Smoothed Particle Hydrodynamics (SPH) method. Parametric computational simulations provide grounds for optimization of cellular structures to satisfy different requirements, which makes them very attractive for use in general engineering applications. 


Full Text:

PDF

References


Cellular Metals and Polymers. Symposium, Fürth, 2004.

Austrian research centers – ARC. Ranshofen, 2005.

Jain V, Johnson I, Ganesh I, Saha BP, Mahajan YR. Effect of rubber encapsulation on the comparative mechanical behaviour of ceramic honeycomb and foam. Mater. Sci. Eng. A. 2003; 347; 109-122.

Körner C, Singer RF. Processing of metal foams – Challenges and Opportunities. Adv. Eng. Mater. 2000; 2(4): 159-165.

Banhart J. Manufacture, characterisation and application of cellular metals and metallic foams. Prog. Mater. Sci. 2001; 46(6): 559-632

Öchsner A, Tane M, Nakajima H. Prediction of the thermal properties of lotus-type and quasi-isotropic porous metals: Numerical and analytical methods. Mater. Lett. 2006; (60): 2690-2694.

Nakajima H, Hyun SK, Ohashi K, Ota K, Murakami K. Fabrication of porous copper by unidirectional solidaification under hydrogen and ist properties. Colloid. Surface. 2001; 197: 209-214.

Tane M, Ichitsubo T, Nakajima H, Hyun SK, Hirao M. Elastic properties of lotus-type porous iron: acoustic measurements and extended effective-mean-field theory. Acta Mater. 2004; 52: 5195-5201.

Andersen O, Waag U, Schneider L, Stephani G, Kieback B. Novel Metallic Hollow Sphere Structures. Adv. Eng. Mater. 2000; 2(4): 192-195.

Antoniou A, Onck PR, Bastawros AF. Experimental analysis of compressive notch strengthening in closed- cell aluminium ally foam. Acta Mater. 2004; 52: 2377-2386.

Gibson LJ, Ashby MF. Cellular solids: Structure and properties. Cambridge: Cambridge University Press; 1997.

Yu JL, Li JR, Hu SS. Strain-rate effect and micro-structural optimization of cellular metals. Mech. Mater. 2006; 38: 160-170.

Deshpande VS, Fleck NA. High strain rate compressive behaviour of aluminium alloy foams. Int. J. Impact Eng. 2000; 24(3): 277-298.

Sieradzki K, Green DJ, Gibson LJ (editors). Mechanical properties of porous and cellular materials. MRS proceedings. 1990.

Papadopoulos DP, Konstantindis IC, Papanastasiou N, Skolianos S, Lefakis H, Tsipas DN. Mechanical properties of Al metal foams. Mater. Lett. 2004; 58(21): 2574-2578.

Klein B. Innovativ Konstruieren mit neuen Werkstoffen und Leichtbau. Kassel: Universität Gesamthochschule Kassel; 2002.

Seitzberger M, Rammerstorfer FG, Gradinger R, Degischer HP, Blaimschein M, Walch. Experimental studies on the quasi-static axial crushing of steel columns filled with aluminium foam. Int. J. Solids Str. 2000; 37(30): 4125-4147.

Fusheng H, Jianning, Hefa C, Junchang G. Effects of process parameters and alloy compositions on the pore structure of foamed aluminium. J. of Mater. Process. Tech 2004; 138(1-3): 505-507.

Shapovalov VI. Porous metals. Mater. Research Soc. 1994; 19(4): 24-28.

NPL Workshop on Metallic Foams. The Sci. Museum National Physical Lab., 2000.

Ashby MF, Evans AG, Fleck NA, Gibson LS, Hutchinson JW, Wadley HNG. Metal foams: a design rule. Boston: Butterworth-Heinemann; 2000.

Metal foam info. Available online http://metalfoam.net [17.11.2004].

Gibson LJ. Biomechanics of cellular solids. J. Biomech. 2005; 38: 377-399.

Elzey DM, Wadley HNG. The limits of solid state foaming. Acta mater. 2001; 49: 849-859.

Öchsner A, Mishuris G, Gracio J, Modelling of the multiaxial elasto-plastic behaviour of porous metals with internal gas pressure, Elsevier Science Ltd, 2004.

Ohrndorf A, Schmidt P, Krupp U, Christ HJ. Mechanische Untersuchung eines geschlossenporigen Aluminiumschaums. Bad Nauheim: Deutscher Verband für Materialforschung und –prüfung, 2000.

Lankford J, Dannemann KA, Strain Rate Effects in Porous Materials, Mat. Res. Soc. Symp. Proc. Vol. 521, 1998.

Shkolnikov MB. Honeycomb modelling for side impact moving deformable barrier. 7th international LS- DYNA users conference, Dearborn, 2002.

Kitazono K, Sato E, Kuribayashi K. Application of mean field approximation to elastic-plastic behaviour for closed-cell foams. Acta mater. 2003; 51: 4823-4836.

Shim VPW, Yap KY, Stronge WJ. Effects of nonhomogeneity, cell damage and strain rate on impact crushing of a strain-softening cellular chain. Int. J. Impact Eng. 1992; 12: 585-602.

Shim VPW, Yap KY. Modelling impact deformation of foam-plate sandwich systems. Int. J. Impact. Eng. 1997; 19 (7): 615-636.

Picu CR, Vincze G, Öztürk F, Grácio J, Barlat F, Maniatty A. Strain rate sensitivity of the commercial aluminium alloy AA5182-O. Mat. Sci. Eng. A 2005; 390 (1): 334-343.

Vesenjak M, _uni_ Z, Öchsner A, Hriber_ek M, Ren Z. Heat conduction in closed-cell cellular metals. Mater. Sci. Eng. Tech. 2005; 36, (10): 608-612.

Vesenjak M. Computational modelling of cellular structures under impact conditions. Doctoral Thesis. Maribor: Faculty of Mechanical Engineering, 2006.

Altstädt V. Polymer Foams: Perspectives and Trends. 7th International workshop on advances in experimental mechanics, Portoro_, 2002.

Hanssen AG, Hopperstad OS, Langseth M, Ilstad H. Validation of constitutive models applicable to aluminium foams. Int. Journal Mech. Sci. 2002; 44 (2): 359-406.

Kouznetsova VG, Geers MGD, Brekelmans M. Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy. Comp. Method. Appl M. 2004; 193 (48-51): 5525-5550.

Reyes A, Hopperstad OS, Berstad T, Langseth M. Implementation of constitutive model for aluminium foam including fracture and statistical variation of Density. 8th international LS-DYNA users conference, Dearborn, 2004.

Öchsner A, Experimentelle und numerische Untersuchung des elasto-plastischen Verhaltens zellularer Modellwerkstoffe. Düsseldorf: VDI Verlag GmbH, 2003.

Hallquist J. Keyword manual. Livermore: Livermore Software Technology Corporation, 2003.

Altenhof A, Ames W. Strain rate effects for aluminum and magnesium alloys in finite element simulations of steering wheel impact test. Fatigue Fract. Engng. Mater. Struct. 2002; 25.

Bodner SR, Symonds PS, Experimental and theoretical investigation of the plastic deformation of cantilever beam subjected to impulse loading. J. Appl. Mech. 1962; 29.

Vesenjak M, Öchsner A, Ren Z. Behaviour of closed-cell foams under impact. Workshop on Computational Engineering Mechanics, Erlangen, 2005.

Hallquist J, Theoretical manual. Livermore: Livermore Software Technology Corporation, 1998.

Liu GR, Liu MB. Smoothed Particle Hydrodynamics – a meshfree particle method. Singapore: World Scientific, 2003.

Schwer LE. Preliminary Assessment of Non-Lagrangian Methods for Penetration Simulation, 8th International LS-DYNA User Conference, 2004.

CFX 5.6 user’s manual. AEA Technology, 2003.




DOI: http://dx.doi.org/10.1260/175095407780130508

Copyright (c) 2016 The International Journal of Multiphysics