Impact and ricochet of a high-speed rigid projectile from an air-water interface


  • B Farouk
  • H Bassindowa
  • S Segletes



A numerical study on a rigid projectile (sphere) ricocheting off a water layer is presented in this paper. The time-dependent three-dimensional simulations are carried out for the impact of a solid metal sphere (with radius r) on a quiescent air-water interface. Three types of metal spheres with specific gravity  values ranging from 7.8 to 2.7 (steel, titanium and duralumin) were considered. The numerical results are compared with analytical solutions and experimental data of the ricochet problem available in the literature. A given range of projectile impact velocity are considered with varying impact angles to determine the critical angle of impact  as a function of the Froude number and specific gravity. A correlation in the form of  is proposed for the ricochet of a solid sphere from an air-water interface.


Soliman AS, Reid SR, Johnshon W. The effect of spherical pro-jectile speed in ricochet off water and sand. . Int J Mechanical Science. 1976;18:279-84.

Birkhoff G, Birkhoff GD, Bleick WE, Handler EH, Murnaghan D, Smith TL. Ricochet off Water. AMP Memo 424M 1944.

Richardson EG. The Impact of Solid on a Liquid Surface. Proc Phys Soc. 1948;61(4):352-67.

Johnson W, Reid SR. Ricichet of Spheres off Water. Journal of Mechanical Engineeering Science. 1975;17(2):71-81.

Hutchings IM. The ricochet of spheres and cylinders from the surface of water. . Int J Mech Sci. 1976;18:241-7.

Flower S. Hell of a Bomb: How the Bombs of Barnes Wallis Helped Win the Second World War. : Tempus Publishing, Stroud, UK; 2002.

Rayleigh. L. Phil Mag. 1876;2(430).

Podesta M. Bouncing steel balls on water. Physics Education. 2007;42(5).

Mirshak R, Beech T. Estimating Ricochet Hazard Zones at Sea. Journal of Defense Modeling and Simulation: Application, Methodology, Technology. 2018;15:399-413.

Kim YK, Choi WC. Ricochet of Spheres on Sand of Various Temperature. Defence Science Journal. 2018;68(2).

Park M-S, Jung Y-R, Park W-G. Numerical study of impact force and ricochet behavior of high speed water-entry bodies. Computers & Fluids. 2003;32(7):939-51.

Guoming C, Jinfu F, Junhua H, Yongli L, An L. The influence of initial conditions of water-entry on ricochet phenomenon. Fluid Dynamics Research. 2017;49(4).

Omidvar P, Farghadani O, Nikeghbali P. SPH for impact force and ricochet behavior of water-entry bodies. International Journal of Modern Physics C. 2017;28(10).

LSTC. LS-DYNA Theory Manual. 2016:77-91.

Segletes SB. A Rod Ricochet Model, ARL-TR-3257. Army Research Laboratory. 2004:1 - 56.

Segletes SB. A model for rod ricochet. International Journal of Impact Engineering 2006;32:1403-39.

Segletes SB. Further development of a model for rod ricochet. International Journal of Impact Engineering. 2007;34:899-925.

Farouk B, Segletes SS. Ricochet of High Speed Aluminum Projectiles from a Steel Plate 2016 International Mechanical Engineering Congress & Exposition; Paper Number: IMECE2016-65164; ; Phoenix Arizona, USA2016.

De Jonquières E. Comptes Rendus. 1883;97:1278.

DeVuyst T, Seidl M, Campbell Jc, L. P, Vignjevic R. Modelling ricochet of a cylinder on water using ALE and SPH methods. Int Jnl of Multiphysics Volume 9, Number 3, 2015;3(9).

LSTC. LS-DYNA Keyword Users Manual, Version 971, Livermore Software Technology Corporation, Livermore CA. 2015.

Belytschko T, Ong JS, Liu WK, Kennedy JM. Hourglass control in linear and nonlinear problems. Computer Methods in Applied Mechanics and Engineering. 1984;43(3):251-76.

Grüneisen E. Theorie des festen Zustandes einatomiger Elemente. Annalen der Physik. 1912;344:257-306.

Grüneisen E. The State of a Solid Body: National Aeronautics and Space Administration; 1959.



How to Cite

Farouk, B., Bassindowa, H. and Segletes, S. (2019) “Impact and ricochet of a high-speed rigid projectile from an air-water interface”, The International Journal of Multiphysics, 13(2), pp. 157-178. doi: 10.21152/1750-9548.13.2.157.