FTMP-based simulations and evaluations of Geometrically-Necessary Boundaries (GNBs) of dislocation


  • S Ihara
  • T Hasebe




The present study targets four representative GNBs (Geometrically Necessary Boundaries) in terms of their unified and quantitative evaluations based on the field theory of multiscale plasticity (FTMP). Discrete dislocation dynamics simulations on GNBs 2, 3, 4 and 7, whose details about the consisting dislocations have been experimentally identified and theoretically evaluated by Hong, Winther, et al., are conducted. Applying the FTMP-based duality diagram representation scheme to the formation processes reveals a systematic interrelationship that further governs the stability of the GNBs, i.e., all the GNBs exhibit a common tendency to converge ultimately to a single master curve. This leads us to propose a postulate about the stability/instability criterion that involves their dynamic interactions with external disturbances.


Suresh, S., Fatigue of Materials, 1998: Cambridge University Press.

Tanaka, E., Murakami, S. and Ooka, M., Dependence of train-Hardening under Multiaxial Non-Proportional Cyclic Plastic Deformation on Geometry History of Plastic Strain Trajectory, Trans. JSME A, 1985. 51(468): p. 1941-1950. https://doi.org/10.1299/kikaia.51.1941

Kuhlmann-Wilsdorf, D. and Hansen, N., Geometrically Necessary, Incidental and Subgrain Boundaries, Scripta Metall. Mater. 1991. 25(7): p. 1557-1562. https://doi.org/10.1016/0956-716x(91)90451-6

Mughrabi, H., Ungar, T., Kienle, W. and Wilkens, M., Long-Range Internal Stress and Asymmetric X-Ray Line Broadening in Tensile Deformed [001]-Oriented Copper Single Crystals, Phil. Mag. A, 1986. 53(6): p. 793-813. https://doi.org/10.1080/01418618608245293

Zaiser, M., Bay, K. and Hahner, P., Fractal Analysis of Deformation-Induced Dislocation Patterns, Acta. Mater., 1999. 47(8): p. 2463-2476. https://doi.org/10.1016/s1359-6454(99)00096-8

Hussein, A. M. and El-Awady, J. A., Quantifying Dislocation Microstructure Evolution and Cyclic Hardening in Fatigued Face-Centered Cubic Single Crystals, J. Mech. Phys. Solids, 2016. 91: p. 126-144. https://doi.org/10.1016/j.jmps.2016.03.012

Steinberger, D., Gatti, R. and Sandfeld, S., A Universal Approach Towards Computational Characterization of Dislocation Microstructure, JOM, 2016. 68(8): p. 2065-2072. https://doi.org/10.1007/s11837-016-1967-1

Sandfeld, S. and Po, G., Microstructural Comparison of the Kinematics of Discrete and Continuum Dislocation Models, Modelling Simul. Mater. Sci. Eng., 2015. 23: 085003(27pp). https://doi.org/10.1088/0965-0393/23/8/085003

Jones, R. E., Zimmerman, J. A., Po, G. and Mandadapu, K. K., Comparison of Dislocation Density Tensor Fields Derive from Discrete Dislocation Dynamics and Crystal Plasticity Simulations of Torsion, J. Mater. Sci. Res., 2016. https://doi.org/10.5539/jmsr.v5n4p44

Ortiz, M., and Repetto, E. A., Nonconvex Energy Minimization and Dislocation Structures in Ductile Single Crystals, J. Mech. Phys. Solids, 1999. 47: p. 397-462. https://doi.org/10.1016/s0022-5096(97)00096-3

Edmiston, J., Steigmann, D.J., Johnson, G.J. and Barton, N., A Model for Elastic-Viscoplastic Deformations of Crystalline Solids Based on Material Symmetry: Theory and Plane-Strain Simulations, Int. J. Eng. Sci., 2013. 63: p. 10-22. https://doi.org/10.1016/j.ijengsci.2012.10.001

Kondo, K., Non-Riemannian Geometry of Imperfect Crystals from a Macroscopic Viewpoint, RRAG Memoirs, 1955. 1(D-I): p. 458-469. (RAAG Memoirs of Unifying Study of Basic Problems in Engineering and Physical Science by Means of Geometry (ed: Kondo. K.), Gakujutsu Bunken Fukyu-kai, Tokyo). https://doi.org/10.1002/zamm.19570370520

Kondo, K., Energy at Plastic Deformation and the Criterion for Yielding, RAAG Memoirs, 1955. 1(D-III): p. 484-494.

Kondo, K., Derivation of the Differential Equations of Yielding from General Variational Criteria in Analogy with General Relativity Theory and an Extension Thereof to Problems involving Critical Temperature, RAAG Memoirs, 1962. 3(D-XII): p. 215-227.

Amari, S., A Theory of Deformations and Stresses of Ferromagnetic Substances by Finsler Geometry, RAAG Memoirs, 1962. 3: p. 257-278. Result score too low

Ashby, M.F., Deformation of Plastically Non-Homogeneous Materials, Phil. Mag., 1970. 21: p. 399-424.

Fleck, N.A., and Hutchinson, J.W., A Reformulation of Strain Gradient Plasticity, J. Mech. Phys. Solids, 2001. 49: p. 2245-2271. https://doi.org/10.1016/s0022-5096(01)00049-7

Hasebe, T., Continuum Description of Inhomogeniousely Deforming Polycrystalline Aggregate based on Field Theory, IUTAM Symposium on Mesoscopic Dynamics of Fracture Process and Materials Strength. Eds. H. Kitagawa and Y. Shibutani, Kluwer Academic Publishers, 2004: p. 381-390. https://doi.org/10.1007/978-1-4020-2111-4_36

Hasebe, T., Sugiyma, M., Adachi, H., Fukutani, S. and Iida, M., Modeling and Simulations of Experimentally-Observed Dislocation Substructures Based on Field Theory of Multiscale Plasticity (FTMP) Combined with TEM and EBSD-Wilkinson Method for FCC and BCC Poly/Single Crystals, Mater. Trans., 2014. 55(5): p. 779-787. https://doi.org/10.2320/matertrans.m2013226

Hasebe, T. and Naito, T., FTMP-based 4D Evaluations of Discrete Dislocation Systems, New Frontiers of Nanometals, Eds. S. Faester, et al. (Proc. 35th RisØ int. Symp. on Maters. Sci.), 2014. : p. 305-312.

Yamada, M., Hasebe, T., Chen, J.-S. and Guan, P.-C., Reproducing Kernel Based Evaluation of Incompatibility Tensor in Field Theory of Plasticity, IMMIJ (Interaction and Multiscale Mechanics: An Int. J.), 2008. 1(4): p. 423-435. https://doi.org/10.12989/imm.2008.1.4.423

Aoyagi, Y. and Hasebe, T., New Physical Interpretation of Incompatibility Tensor and Its Application to Dislocation Substructure Evolution, Key Materials Engineering, 2007. 340(341): p. 217-222. https://doi.org/10.4028/www.scientific.net/kem.340-341.217

Yamada, M., Hasebe, T., Tomita, Y., Onizawa, T., Reproducing Kernel Based Evaluation of Incompatibility Tensor in Field Theory of Plasticity, IMMIJ (Interaction and Multiscale Mechanics: An Int. J.), 2008. 1(4): p.437-448. https://doi.org/10.12989/imm.2008.1.4.423

Hasebe, T., Multiscale Crystal Plasticity Modeling based on Field Theory, CMES, 2006. 11(3): p. 145-155.

Hasebe, T., Interaction Fields Based on Incompatibility Tensor in Field Theory of Plasticity-Part I: Theory- , IMMIJ (Interaction and Multiscale Mechanics: An Int. J.), 2009. 2(1): p. 1-14. https://doi.org/10.12989/imm.2009.2.1.001

Hasebe, T., Interaction Fields Based on Incompatibility Tensor in Field Theory of Plasticity -Part II: Application-, IMMIJ (Interaction and Multiscale Mechanics: An Int. J.), 2009. 2(1): p. 15-30. https://doi.org/10.12989/imm.2009.2.1.015

Hong, C., Huang, X. and Winther, G., Dislocation Content of Geometrically Necessary Boundaries Aligned with Slip Planes in Rolled Aluminium, Phil. Mag. A, 2013. 93(23): p. 3118-3141. https://doi.org/10.1080/14786435.2013.805270

Winther, G., Hong, C. and Huang, X., Low-Energy Dislocation Structure (LEDS) Character of Dislocation Boundaries Aligned with Slip Planes in Rolled Aluminium, Phil. Mag., 2015. 95(13): p. 1471-1489. https://doi.org/10.1080/14786435.2015.1033488

Arsenlis, A., Cai, W., Tang, M., Rhee, M., Oppelstrup, T., Hommes, G., Pierce, T. G. and Bulatov, V. V., Enabling Strain Hardening Simulations with Dislocation Dynamics, Modelling Simul. Mater. Sci. Eng., 2007. 15(6): p. 553-595. https://doi.org/10.1088/0965-0393/15/6/001

Bulatov, V.V., Cai, W., Computer Simulations of Dislocations, 2006: Oxford University Press.

The Japan Institute of Metals and Materials, Theory of Dislocations: Its Applications to Metallurgy (in Japanese), 1971: Maruzen.

Meyers, M. A., Dynamic Behavior of Materials, 1994: Wiley.



How to Cite

Ihara, S. and Hasebe, T. (2019) “FTMP-based simulations and evaluations of Geometrically-Necessary Boundaries (GNBs) of dislocation”, The International Journal of Multiphysics, 13(3), pp. 253-268. doi: 10.21152/1750-9548.13.3.253.