The research of oil film thickness on the gear tooth surface: A review


  • C Sun
  • J Wang
  • S Du
  • J Wang



Increasingly demanding performance standards and operating requirements are driving the growing interest on the influence of gear oil film on reliability under the condition of high speed and heavy load. The fatigue life of gears can be increased by optimizing the oil film thickness on the gear tooth surface. The oil film thickness can reflect the ability of the gear to resist pitting and gluing failure. Many theories and experiments are devoted to the study of the oil film thickness. The improvement of gear manufacturing accuracy also makes the influence of tooth surface roughness on oil film thickness not negligible. In order to compile and categorize key investigations in an expansive field with substantial recent research, this work reviews oil film thickness with focus on numerical calculation methods, influence of gear surface roughness on oil film thickness and fatigue life analysis based on oil film thickness.


Concli, F. and C. Gorla, Windage, churning and pocketing power losses of gears: different modeling approaches for different goals. Forsch Ingenieurwes, 2016. 80: p. 85-99. DOI:

Concli, F. and C. Gorla, Numerical modeling of the power losses in geared transmissions: Windage, churning and cavitation simulations with a new integrated approach that drastically reduces the computational effort. Tribology International, 2016. 103: p. 58-68. DOI:

Laruelle, S., C. Fossier, C. Changenet, F. Ville, and S. Koechlin, Experimental investigations and analysis on churning losses of splash lubricated spiral bevel gears. Machanics and Industry, 2017. 18(4): p. 1-10. DOI:

Concli, F., C. Gorla, A.D. Torre, and G. Montenegro, Churning power losses of ordinary gears : a new approach based on the internal fluid dynamics simulations. Lubrication Science, 2015. 27: p. 313-326. DOI:

Amarnath, M. and C. Sujatha, Surface contact fatigue failure assessment in spur gears using lubricant film thickness and vibration signal analysis. Tribology Transactions, 2015. 58: p. 327-336. DOI:

Liu, H.L., H.J. Liu, C.C. Zhu, and R.G. Parker, Effects on lubrication on gear performance: A review. Mechanism and Machine Theory, 2020. 145: p. 1-14. DOI:

Hamel, M., A. Addali, and D. Mba, Investigation of the influence of oil film thickness on helical gear defect detection using Acoustic Emission. Applied Acoustic, 2014. 79: p. 42-46. DOI:

Kumar, P. and M.M. Khonsari, On the role of lubricant rheology and piezo-viscous properties in line and point contact EHL. Tribology Internationa, 2009. 42: p. 1522-1530. DOI:

Stephenson R.R. and J.F. Osterle, A direct solution of the elasto-hydrodynamic lubrication problem. ASLE Transactions, 1962. 5(2): p. 365-374. DOI:

Kim, K.H. and F. Sadeghi, Three-dimensional temperature distribution in ehd lubrication: Part II-Point contact and numerical formulation. Journal of Tribology, 1993. 115(1): p. 36-45. DOI:

Dowson, D. and G.R. Higginson, A numerical solution to the elasto-hydrodynamic problem. Journal of Mechanical Engineering Science, 1959. 1(1): p. 6-15. DOI:

Rohde, S.M. and K.P. Oh, A unified treatment of thick and thin Elasto-hydrodynamic problems by using higher order element method. Pro. R. Soc. Lond, 1975. 343: p. 315-331. DOI:

Hughes, t.G., C.D. Elcoate and H.P. Evans, A novel method for integrating first- and second- order differential equations in elastohydrodynamic lubrication for the solution of smooth isothermal, line contact problems. International Journal for Numerical Methods in Engineering, 1999. 44(8): p. 1099-1113. DOI:<1099::aid-nme546>;2-7

Larsson, R., Transient non-Newtonian elastohydrodynamic lubrication analysis of an involute spur gear. Wear, 1997. 207(1): p. 67-73. DOI:

Ouyang, T.C., H.Z. Huang, X.R. Zhou, M.Z. Pan, N. Chen and D.L. Lv, A finite line contact tribo-dynamic model of a spur gear. Triboly International, 2018. 119: p. 753-765. DOI:

Barbieri, M., A.A. Lubrecht and F. Pellicano, Behavior of lubricant fluid film in gears under dynamic conditions. Tribogy International, 2013. 62: p. 37-48. DOI:

Akbarzadeh, S. and M.M. Khonsari, Thermoelastohydrodynamic Analysis of Spur Gears with Consideration of Surface Roughness. Tribology Letters, 2008. 32(2): p. 129-141. DOI:

Han, L., D.W. Zhang and F.J. Wang, Predicting Film Parameter and Friction Coefficient for Helical Gears Considering Surface Roughness and Load Variation. Tribology Transactions, 2013. 56(1): p. 49-57. DOI:

Ren, N., D. Zhu and W.W. Chen, A three-dimensional deterministic model for rough surface line-contact EHL problems. Journal of Tribology, 2009. 131(1): p. 1-9. DOI:

Bobach, L., R. Beilicke, D. Bartel and L. Deters, Thermal elastohydrodynamic simulation of involute spur gears incorporating mixed friction. Tribology International, 2012. 48: p. 191-206. DOI:

Evans, H.P., R.W. Snidle , K.J. Sharif, B.A, Shaw and J. Zhang, Analysis of Micro-Elastohydrodynamic Lubrication and Prediction of Surface Fatigue Damage in Micropitting Tests on Helical Gears. Journal of Tribology, 2012. 135(1): p. 011501. DOI:

Choo, J.W., A.V. Olver and H.A. Spikes, Influence of surface roughness features on mixed-film lubrication. Lubrication Science, 2003. 15(3): p. 219-232. DOI:

Epstein, D., L.M. Keer and Q.J. Wang, Effect of surface topography on contact fatigue in mixed lubrication. Tribology Transactions, 2003. 46(4): p. 506-513. DOI:

Onions, R.A. and J.F. Archard, Pitting of gears and discs. Proceedings of the Institution of Mechanical Engineers, 1974. 188(1): p. 673-682. DOI:

Webster, M.N. and C.J.J. Norbart, An Experimental Investigation of Micropitting Using a Roller Disk Machine. Tribology Transactions, 1995. 38: p. 883-893. DOI:

Cardoso, N.F.R., R.C. Martins, J.H.O. Seabra, A. Igartua, J.C. Rodriguez and R. Luther, Micropitting performance of nitrided steel gears lubricated with mineral and ester oils. Tribology International, 2009. 42(1): p. 77-87. DOI:

Fajdiga, G., J. FLasker, S. Glodez and T.K. Helen, Numerical modelling of micro-pitting of gear teeth flanks. Fatigue & Fracture of Engineering Materials & Structures, 2003. 26(12): p. 1135-1143. DOI:

Thakre, G.D., S.C. Sharma, S.P. Harsha and M.R. Tyagi, Tribological failure analysis of gear contacts of Exciter Sieve gear boxes. Engineering Failure Analysis, 2014. 36: p. 75-91. DOI:

Imrek, H. and A. Unuvar, Investigation of influence of load and velocity on scoring of addendum modified gear tooth profiles. Mechanism and Machine Theory, 2009. 44(5): p. 938-948. DOI:

Li, S. and A. Kahraman, A fatigue model for contacts under mixed elastohydrodynamic lubrication condition. International Journal of Fatigue, 2011. 33(3): p. 427-436. DOI:



How to Cite

Sun, C., Wang, J., Du, S. and Wang, J. (2020) “The research of oil film thickness on the gear tooth surface: A review”, The International Journal of Multiphysics, 14(3), pp. 291-299. doi: 10.21152/1750-9548.14.3.291.