Including coronary ostia in patient-specific 3D models of the whole aortic valve apparatus, derived from TEE, for biomechanical simulations.

Authors

  • M Loureiro-Ga
  • C Veiga
  • G Fdez-Manin
  • F Calvo-Iglesias
  • V Alfonso Jimenez
  • P Pazos
  • A Iñiguez

DOI:

https://doi.org/10.21152/1750-9548.15.1.1

Abstract

There is an increasing interest in the numerical modeling and simulation of the aortic valve behavior and functioning, on the different stages involved as healthy, stenotic or replacement procedure. As echocardiography is a ubiquitous and economic modality, the geometric model construction based on such images is therefore of major interest.

In this paper, a new patient-specific approach for modeling the complete aortic valve apparatus - derived from parameters extracted from 3D transesophageal echocardiographs -that includes for the first time the left ventricle outflow tract and the coronary ostia, both crucial for proper assessment of valve biomechanical behavior, is presented. An innovative method for characterizing coronary pressures from patient-specific clinical data, to be used as boundary conditions for the numerical simulation is also described.

Results from experiments were presented to evaluate the novel aspects of the model, that permits to compare the existing models (non-coronary model NCM) and the proposed new coronary model (CM). Variations of displacement and stress on each leaflet prove the need of considering leaflet asymmetry. Computed quantities in the results sections are within the range of physiological data.  This permits to conclude that the proposed aortic valve apparatus model of the aortic valve apparatus improves on previous ones by considering this extremely complex structure in greater detail.

References

Arts T, Delhas T, Bovendeerd P, et al. Adaptation to mechanical load determines shape and properties of heart and circulation, the CircAdapt model. Am J Physiol Heart Circ Physiol 2005;288:1943-1954. DOI: https://doi.org/10.1152/ajpheart.00444.2004

Bailey, J., Curzen, N. and Bressloff, N. W., 2017. The Impact of Imperfect Frame Deployment and Rotational Orientation on Stress within the Prosthetic Leaflets During Transcatheter Aortic Valve Implantation. J. Biomech. 53: 22-28. DOI: https://doi.org/10.1016/j.jbiomech.2016.12.031

Baumgartner H., JudyHung, Javier Bermejo, John B.Chambers, Edvardsen, Seven Goldstein, Patrizio Lancellotti, Melissa Le Fevre, Fletcher Miller, Catherine M.Otto. Recommendations on the Echocardiographic Assessment of Aortic Valve Stenosis: A Focused Update from the European Association of Cardiovascular Imaging and the American Journal of the American Society of Echocardiography Volume 30, Issue 4, April 2017, Pages 372-392. DOI: https://doi.org/10.1016/j.echo.2017.02.009

Capelli, C., Bosi, G.M., Cerri, E. et al. Patient-specific simulations of transcatheter aortic valve stent implantation. Med Biol Eng Comput 2012;50:183. DOI: https://doi.org/10.1007/s11517-012-0864-1

Charitos EI, Sievers HH. Anatomy of the aortic root: implications for valve-sparing surgery. Annals of Cardiothoracic Surgery. Annals of Cardiothoracic Surgery. 2013;2(1):53-56. DOI: https://doi.org/10.3978/j.issn.2225-319X.2012.11.18.

COMSOL Multiphysics® v.5.2. www.comsol.com. COMSOL AB, Stockholm, Sweeden.

Conti CA, Votta E, Della Corte A, et al. Dynamic finite element analysis of the aortic root from MRI-derived parameters. Medical engineering & physics. 2010;32(2):212-221. DOI: https://doi.org/10.1016/j.medengphy.2009.12.003

De Hart J,Peters GWM, Schereurs PJG, Baaijens FPT. A two-dimensional fluid-structure interaction model of the aortic valve. Journal of Biomechanics. 2000;33:1079-1088. DOI: https://doi.org/10.1016/S0021-9290(00)00068-3

FreeCAD v. 0.16, http://www.freecadweb.org/ Accessed December 4, 2017

Ghista, D.N. Toward an optimum prosthetic trileaflet aortic-valve design. Med. & biol. Engng. 1976;14:122. DOI: https://doi.org/10.1007/BF02478737

Gorlin R, GORLIN SG, Hydraulic formula for calculation of the area of the stenotic mitral valve, other cardiac valves, and central circulatory shunts. Am Heart J. 1951;41(1):1 DOI: https://doi.org/10.1016/0002-8703(51)90002-6

Halevi, R., Hamdan, A., Marom, G. et al. Fluid–structure interaction modeling of calcific aortic valve disease using patient-specific three-dimensional calcification scans. Med Biol Eng Comput 2016;54:1683. DOI: https://doi.org/10.1007/s11517-016-1458-0

Haj-Ali R, Marom G, Zekry SB, Rosenfeld M, Raanani E. A general three-dimensional parametric geometry of the native aortic valve and root for biomechanical modeling. Journal of biomechanics. 2012;45(14):2392-2397. DOI: https://doi.org/10.1016/j.jbiomech.2012.07.017

Hsu MC, Kamensky D, Xu F, et al. Dynamic and flud-structure interaction simulations of bioprothetic heart valves using parametric design with T-splines and Fung-type material models. Comput Mech. 2015;55:1211-1225. DOI: https://doi.org/10.1007/s00466-015-1166-x

Ionasec RI, Voigt I, Georgescu B, et al. Patient-Specific Modeling and Quantification of the Aortic and Mitral Valves From 4-D Cardiac CT and TEE. IEEE Transactions on Medical Imaging. 2010;29(9):1636-1651. DOI: https://doi.org/10.1109/TMI.2010.2048756

Joda A, Jin Z, Haverich A, Summers J, Korossis S. Multiphysics simulation of the effect of leaflet thickness inhomogeneity and material anisotropy on the stress-strain distribution on the aortic valve. J Biomech. 2016;49(12):2502-2512. DOI: https://doi.org/10.1016/j.jbiomech.2016.02.041.

Jones E, Oliphant E, Peterson P, et al. SciPy: Open Source Scientific Tools for Python 2001.

http://www.scipy.org/ Accessed December 4, 2017

Kilner PJ, Yang GZ, Mohiaddin RH, Firmin DN, Longmore DB. Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping. Circulation. 1993;88:2235-2247. DOI: https://doi.org/10.1161/01.CIR.88.5.2235

Laadhari A, Quarteroni A. Numerical modeling of heart valves using resistive Eulerian surfaces. Int J Numer Meth Biomed Engng. 2016;e02743. DOI: https://doi.org/10.1002/CNM.2743

Labrosse MR, Beller CJ, Robicsek F, Thubrikar MJ. Geometric modeling of functional trileaflet aortic valves: development and clinical applications. Journal of biomechanics. 2006;39(14):2665-2672. DOI: https://doi.org/10.1016/j.jbiomech.2005.08.012

Labrosse MR, Lobo K, Beller CJ. Structural analysis of the natural AV in dynamics: from unpressurized to physiologically loaded. Journal of biomechanics. 2010;43(10),1916-1922. DOI: https://doi.org/10.1016/j.jbiomech.2010.03.020

Labrosse MR, Beller CJ, Boodhwani M, Hudson C, Sohmer B. Subject-specific finite-element modeling of normal aortic valve biomechanics from 3D+ t TEE images. Medical image analysis. 2015;20(1):162-172. DOI: https://doi.org/10.1016/j.media.2014.11.003

Lau KD, Diaz V, Scarmbler P, Burriesci G. Mitral valve dynamics in structural and fluid-structure interaction models. Med Eng Phys 2010;32:1057-1064. DOI: https://dx.doi.org/10.1016%2Fj.medengphy.2010.07.008

Leyh RG, Schmidtke C, Sievers HH, Yacoub MH. Opening and closing characteristics of the aortic valve after different types of valve-preserving surgery. Cirulation. 1999; 100(21): 2156-2160. DOI: https://doi.org/10.1161/01.CIR.100.21.2153

Loureiro-Ga, M., et al. 2017. An Aortic Root Geometric Model, Based on Transesophageal Echocardiographic Image Sequences (TEE), for Biomechanical Simulation. In: Mateos, M., Alonso, P. (Eds.) Computational Mathematics, Numerical Analysis and Applications. Springer, Cham, pp.249-254. DOI: https://doi.org/10.1007/978-3-319-49631-3_15

Loureiro-Ga M, Veiga C, Fdez-Manin G, Jimenez VA, Calvo-Iglesias F, Iniguez A (2020). A biomechanical model of the pathological aortic valve: simulation of aortic stenosis. Computer Methods in Biomechanics and Biomedical Engineering, Vol.23:8 DOI: https://doi.org/10.1080/10255842.2020.1720001

Loureiro-Ga, M., Veiga, C., Fdez-Manin, G., Jimenez, V.A., Juan Salvadores, P., Baz, J.A., Iniguez, A. 2018. Hemodynamics of the left coronary artery after TAVI procedure: a numerical simulation analysis. In Proceedings of the Congress of the European Society of Cardiology. DOI: https://doi.org/10.1093/eurheartj/ehy566.P6224

Lozano R, Naghavi M, Foreman K, et al., Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. The Lancet. 2012;380:2095-2128. DOI: https://doi.org/10.1016/S0140-6736(12)61728-0

Luraghi G., Wu W., De Gaetano F., Rodriguez Matas J.F., Moggridge G.D., Serrani M., Stasiak J., Migliavacca F. Evaluation of an aortic valve prosthesis: Fluid-structure interaction or structural simulation? Journal of Biomechanics. 2017; 58, pp.45-51. DOI: https://doi.org/10.1016/j.jbiomech.2017.04.004

Luraghi, G., Migliavacca, F., García-González, A. et al. On the Modeling of Patient-Specific Transcatheter Aortic Valve Replacement: A Fluid–Structure Interaction Approach. Cardiovasc Eng Tech (2019) 10: 437. DOI: https://doi.org/10.1007/s13239-019-00427-0

Marom, G., Kim, HS., Rosenfeld, M. et al. Fully coupled fluid–structure interaction model of congenital bicuspid aortic valves: effect of asymmetry on hemodynamics. Med Biol Eng Comput 2013;51:839. DOI: https://doi.org/10.1007/s11517-013-1055-4

Mohammadi H, Cartier R, Mongrain R. 3D physiological model of the AV incorporating small coronary arteries. Int J Numer Meth Biomed Engng. 2017;33:e2829. DOI: https://doi.org/10.1002/cnm.2829

Morganti S, Valentini A, Favalli V, et al. Aortic root 3D parametric morphological model from 2D-echo images. Computers in biology and medicine. 2013;43(12):2196-2204. DOI: https://doi.org/10.1016/j.compbiomed.2013.09.015

Morganti S, Auricchio F, Benson DJ, et al. Patient-specific isogeometric structural analysis of aortic valve closure. Computer Methods in Applied Mechanics and Engineering. 2015;284:508-520. DOI: https://doi.org/10.1016/j.cma.2014.10.010

Pearson AC, Guo R, Orsinelli DA, Binkley PF, Pasierski TJ. Transesophageal echocardiographic assessment of the effects of age, gender, and hypertension on thoracic aortic wall size, thickness, and stiffness. American Heart Journal. 1994;128(2):344-351. DOI: https://doi.org/10.1016/0002-8703(94)90488-X

Querzoli G, Fortini S, Espa S et al. A laboratory model of the aortic root flow including the coronary arteries. Exp Fluids. 2016;57:134. DOI: https://doi.org/10.1007/s00348-016-2221-x

Robicsek F, Leonardo da Vinci and the Sinuses of Valsalva, Ann Thoruc Surg. 1991;52:328-35

Rocatello, G., De Santis, G., De Bock, S. et al. Optimization of a Transcatheter Heart Valve Frame Using Patient-Specific Computer Simulation. Cardiovasc Eng Tech (2019) 10: 456. DOI: https://doi.org/10.1007/s13239-019-00420-7

Rotman, O.M., Kovarovic, B., Sadasivan, C. et al. Realistic Vascular Replicator for TAVR Procedures. Cardiovasc Eng Tech (2018) 9: 339. DOI: https://doi.org/10.1007/s13239-018-0356-z

Sturla F, Votta E, Stevanella M, Conti CA, Redaelli A. Impact of modeling fluid structure interaction in the computational analysis of aortic root biomechanics. Medical Engineering & Physics. 2013;35(12),1721-1730. DOI: https://doi.org/10.1016/j.medengphy.2013.07.015

Schneider, C.A., Rasband, W.S., Eliceiri, K.W. "NIH Image to ImageJ: 25 years of image analysis". Nature Methods 9, 671-675, 2012. DOI: https://doi.org/10.1038/nmeth.2089

Steinman, D.A. & Migliavacca, F. Editorial: Special Issue on Verification, Validation, and Uncertainty Quantification of Cardiovascular Models: Towards Effective VVUQ for Translating Cardiovascular Modelling to Clinical Utility. Cardiovasc Eng Tech (2018) 9: 539. DOI: https://doi.org/10.1007/s13239-018-00393-z

Tango, A.M., Salmonsmith, J., Ducci, A. et al. Validation and Extension of a Fluid–Structure Interaction Model of the Healthy Aortic Valve. Cardiovasc Eng Tech (2018) 9: 739. DOI: https://doi.org/10.1007/s13239-018-00391-1

Thubrikar MJ. The aortic valve. Boca Raton, FL: CRC Press; 1990.

Votta E, Presicce M, Cella Corte A, et al. A novel approach to the quantification of arotic root in vivo structural mechanics. Int J Numer Meth Biomed Engng. 2017;33:e2849. DOI: https://doi.org/10.1002/cnm.2849

Domenichini, F. & Pedrizzetti, G. Asymptotic Model of Fluid–Tissue Interaction for Mitral Valve Dynamics. Cardiovasc Eng Tech (2015) 6: 95. DOI: https://doi.org/10.1007/s13239-014-0201-y

Yeh, H.H., Rabkin, S.W. & Grecov, D. Hemodynamic assessments of the ascending thoracic aortic aneurysm using fluid-structure interaction approach. Med Biol Eng Comput. 2018;56:435 DOI: https://doi.org/10.1007/s11517-017-1693-z

Araz R. Kivi, Nima Sedaghatizadeh, Benjamin S. Cazzolato, Anthony C. Zander, Ross Roberts-Thomson, Adam J. Nelson, Maziar Arjomandi. Fluid structure interaction modelling of aortic valve stenosis: Effects of valve calcification on coronary artery flow and aortic root hemodynamics. Computer Methods and Programs in Biomedicine, 2020. DOI: https://doi.org/10.1016/j.cmpb.2020.105647

Published

2021-01-28

How to Cite

Loureiro-Ga, M., Veiga, C., Fdez-Manin, G., Calvo-Iglesias, F., Alfonso Jimenez, V., Pazos, P. and Iñiguez, A. (2021) “Including coronary ostia in patient-specific 3D models of the whole aortic valve apparatus, derived from TEE, for biomechanical simulations.”, The International Journal of Multiphysics, 15(1), pp. 1-18. doi: 10.21152/1750-9548.15.1.1.

Issue

Section

Articles

Most read articles by the same author(s)