Experimental and numerical study on the interactions between high velocity long-rods and steel-elastomer bulging armor

Authors

  • T Fras

DOI:

https://doi.org/10.21152/1750-9548.15.2.185

Abstract

The discussed laminated steel-elastomer armor takes advantage of the rubber interlayer that deforms rapidly under an impact which causes a subsequent deformation, so-called ‘bulging’, of the side steel plates. It is observed that long and slender kinetic-energy projectiles made with a tungsten alloy tend to fracture disturbed by an asymmetric contact with the deforming plates.The numerical analysis accompanies the ballistic test complementing it by a detailed insight into the defeat mechanism. Based on the experimental and numerical investigation, the given study explains its physical background

References

Chiyo D, Kodandaramaiah SB, Grosh K, Ma ZD, Raju B, Rostam-Abadi F. Reactive Structure and Smart Armor for Army's Future Ground Vehicles. ARMY TANK AUTOMOTIVE RESEARCH DEVELOPMENT AND ENGINEERING CENTER WARREN MI; 2010 Dec 1.

Lidén E, Mousavi S, Helte A, Lundberg B. Deformation and fracture of a long-rod projectile induced by an oblique moving plate: Numerical simulations. International journal of impact engineering. 2012 Feb 1;40:35-45. https://doi.org/10.1016/j.ijimpeng.2011.09.003

Lidén E, Andersson O, Lundberg B. Deformation and fracture of a long-rod projectile induced by an oblique moving plate: Experimental tests. International journal of impact engineering. 2011 Dec 1;38(12):989-1000. https://doi.org/10.1016/j.ijimpeng.2011.07.002

Lidén E, Helte A. The break-up tendency of long rod projectiles. Defence technology. 2016 Apr 1;12(2):177-87. https://doi.org/10.1016/j.dt.2016.01.003

Lidén E, Johansson B, Lundberg B. Effect of thin oblique moving plates on long rod projectiles: A reverse impact study. International journal of impact engineering. 2006 Oct 1;32(10):1696-720. https://doi.org/10.1016/j.ijimpeng.2005.02.004

Rosenberg Z, Dekel E. On the role of material properties in the terminal ballistics of long rods. International journal of impact engineering. 2004 Aug 1;30(7):835-51. https://doi.org/10.1016/j.ijimpeng.2004.03.007

Hohler V, Schneider E, Stilp AJ, Tham R. Length and velocity reduction of high density rods perforating mild steel and armor steel plates. InProc 4th International Symposium on Ballistics, Monterey, CA, USA 1978 Oct 17 (Vol. 1).

NATO AEP-55 STANAG 4569 – Protection levels for Occupants of Logistic and Light Armoured Vehicles.

Anderson Jr CE, Mullin SA, Kuhlman CJ. Computer simulation of strain-rate effects in replica scale model penetration experiments. International journal of impact engineering. 1993 Jan 1;13(1):35-52. https://doi.org/10.1016/0734-743x(93)90107-i

Magness Jr L, Leonard W. Scaling issues for kinetic energy penetrators. Proc. 14th Int. Syrup. on Ballistics. 1993 Sep;2:281.

Rosenberg Z, Kreif R, Dekel E. A note on the geometric scaling of long-rod penetration. International journal of impact engineering. 1997 Mar 1;19(3):277-83. https://doi.org/10.1016/s0734-743x(96)00023-1

Hunkler R. Untersuchungen zur Wechselwirkung von Stahl-Gummi-Stahl-Sandwiches mit KE-Penetratoren. ISL Report PU 313/1993.

MIL-DTL-12560J (2009-07-24). Armor Plate, Steel, Wrought, Homogeneous (for Use in Combat-Vehicles and for Ammunition Testing.

Jutras M. Improvement of the characterization method of the Johnson-Cook model. Master Thesis, Québec, Université Laval 2006.

Gailly B. Etude du comportement dynamique et de la rupture de trois aciers à blindage. Doctoral Thesis. Paris, ENMP, 1996.

Nahme H, Lach E. Dynamic behavior of high strength armor steels. Le Journal de Physique IV. 1997 Aug 1;7(C3):C3-373. https://doi.org/10.1051/jp4:1997365

Timcorubber https://www.timcorubber.com/rubber-materials/natural-rubber [Accessed 07.05.2020].

Yeoh OH. Hyperelastic material models for finite element analysis of rubber. J Nat Rubbber Res 1997;12:142-53.

Leal-Ayala DR, Allwood JM, Petavratzi E, Brown TJ, Gunn G. Mapping the global flow of tungsten to identify key material efficiency and supply security opportunities. Resources, Conservation and Recycling. 2015 Oct 1;103:19-28. https://doi.org/10.1016/j.resconrec.2015.07.003

Bose A, Sadangi R, German RM. A review on alloying in tungsten heavy alloys. Supplemental Proceedings: Materials Processing and Interfaces. 2012 Mar 17;1:453-65. https://doi.org/10.1002/9781118356074.ch59

Kennametal Mistelgau. Tungsten WHA Y925 Material Datasheet.

Skoglund P. Constitutive modelling of a tungsten heavy metal alloy. InJournal de Physique IV (Proceedings) 2003 Sep 1 (Vol. 110, pp. 207-212). EDP sciences. https://doi.org/10.1051/jp4:20020695

Skoglund P. Constitutive modelling and mechanical properties of a tungsten heavy metal alloy. Scientific report. Weapons and Protection SE-147 25 Tumba. Foi-R—0723—SE 2002 ISSN 165—1942.

Fras T, Colard L, Pawlowski P. Perforation of aluminum plates by fragment simulating projectiles (FSP). The International Journal of Multiphysics. 2015 Sep 30;9(3):267-85. https://doi.org/10.1260/1750-9548.9.3.267

Fras T, Roth CC, Mohr D. Dynamic perforation of ultra-hard high-strength armor steel: Impact experiments and modeling. International Journal of Impact Engineering. 2019 Sep 1;131:256-71. https://doi.org/10.1016/j.ijimpeng.2019.05.008

Fras T, Roth CC, Mohr D. Application of two fracture models in impact simulations. Bulletin of the Polish Academy of Sciences. Technical Sciences. 2020;68(2).

Johnson GR, Cook WH. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. InProceedings of the 7th International Symposium on Ballistics 1983 Apr 19 (Vol. 21, No. 1, pp. 541-547).

Johnson GR, Cook WH. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering fracture mechanics. 1985 Jan 1;21(1):31-48. https://doi.org/10.1016/0013-7944(85)90052-9

Steinberg DJ. Equation of state and strength properties of selected materials. 1996.

Hallquist JO. LS-DYNA theory manual. Livermore Software Technology Corporation 2006.

Kılıç N, Ekici B. Ballistic resistance of high hardness armor steels against 7.62 mm armor piercing ammunition. Materials & Design. 2013 Feb 1;44:35-48. https://doi.org/10.1016/j.matdes.2012.07.045

Fras T, Murzyn A, Pawlowski P. Defeat mechanisms provided by slotted add-on bainitic plates against small-calibre 7.62 mm× 51 AP projectiles. International Journal of Impact Engineering. 2017 May 1;103:241-53. https://doi.org/10.1016/j.ijimpeng.2017.01.015

Fras T, Szachogluchowicz I, Sniezek L. Ti6Al4V-AA1050-AA2519 explosively-cladded plates under impact loading. The European Physical Journal Special Topics. 2018 Sep 1;227(1-2):17-27. https://doi.org/10.1140/epjst/e2018-00114-9

Mooney M. A theory of large elastic deformation. Journal of applied physics. 1940 Sep;11(9):582-92

Rivlin RS. Large elastic deformations of isotropic materials IV. Further developments of the general theory. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences. 1948 Oct 5;241(835):379-97. https://doi.org/10.1098/rsta.1948.0024

Ogden RW. Large deformation isotropic elasticity–on the correlation of theory and experiment for incompressible rubberlike solids. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences. 1972 Feb 1;326(1567):565-84. https://doi.org/10.1098/rspa.1972.0026

Fraś T, Nowak Z, Perzyna P, Pecherski RB. Identification of the model describing viscoplastic behaviour of high strength metals. Inverse Problems in Science and Engineering. 2011 Jan 1;19(1):17-30. https://doi.org/10.1080/17415977.2010.531474

Pęcherski RB, Nalepka K, Frąś T, Nowak M. Inelastic flow and failure of metallic solids. Material effort: study across scales. InConstitutive Relations under Impact Loadings 2014 (pp. 245-285). Springer, Vienna. https://doi.org/10.1007/978-3-7091-1768-2_6

T. Fras. Modelling of steel fracture in ballistic protection. In: Handbook of Damage Mechanics: Nano to Macro Scale for Materials and Structures ed. G.Z. Voyiadijis. Springer Science + Business Media, LLC, part of Springer Nature 2020. https://doi.org/10.1007/978-1-4614-8968-9_69-1

Published

2021-04-19

How to Cite

Fras, T. (2021) “Experimental and numerical study on the interactions between high velocity long-rods and steel-elastomer bulging armor”, The International Journal of Multiphysics, 15(2), pp. 185-210. doi: 10.21152/1750-9548.15.2.185.

Issue

Section

Articles