A Two-phase Constitutive Model with Damage for Tungsten Heavy Alloy




Tungsten heavy alloy is a kind of two-phase alloy composed of high-strength tungsten phase and binder phase with good-plasticity. Its mechanical properties and damage evolution are affected by both phases. The static and dynamic mechanical tests of 92.5W-4.9Ni-2.1Fe-0.5Co are carried out. According to the characteristics of stress-strain curves, KHL model is selected as the constitutive model of the material. Then, combined with Eshelby equivalent inclusion theory and Mori Tanaka mean field theory, the stress-strain relationship of each phase in tungsten heavy alloy is studied by introducing representative volume element (RVE). The damage evolution model considering the strain rate effect is proposed, and according to the different loading states, a two-phase constitutive model with damage is established. By compiling the UMAT subroutine, the test conditions of different strain rates are calculated in ABAQUS software. The simulation results are in good agreement with the test results, and the validity of the proposed model is verified.


T. Liu, J. L. Fan B. Y. Huang, M. G. Qi and J. M. Tian. “Effect of Mechanical alloying and trace Y2O3 addition on microstructure of fine-grain tungsten heavy alloy rods,” Rare Metal Materials and Engineering, 39(2), 314-317(2010). DOI: https://doi.org/10.3724/SP.J.1077.2010.01217

Z. H. Zhang, F. C. Wang, S. K. Li and L. Wang. “Deformation characteristics of the 93W–4.9Ni–2.1Fe tungsten heavy alloy deformed by hydrostatic extrusion,” Materials Science & Engineering A, 435, 632-637(2006). DOI: https://doi.org/10.1016/j.msea.2006.07.134

I. S. Humail, F. Akhtar, S. J. Askari, M. Tufail and X. Qu. “Tensile behavior change depending on the varying tungsten content of W–Ni–Fe alloys,” International Journal of Refractory Metals and Hard Materials, 25(5-6), 380-385 (2007). DOI: https://doi.org/10.1016/j.ijrmhm.2006.12.003

R. Gero, L. Borukhin and I. Pikus. “Some structural effects of plastic deformation on tungsten heavy metal alloys,” Materials Science & Engineering A, 302(1), 162-167(2001). DOI: https://doi.org/10.1016/S0921-5093(00)01369-1

J. Das, G. A. Rao and S. K. Pabi. “Microstructure and mechanical properties of tungsten heavy alloys,” Materials Science & Engineering A, 527(29-30), 7841–7847(2010). DOI: https://doi.org/10.1016/j.msea.2010.08.071

R. M. Luo, D. W. Huang, M. C. Yang, E. L. Tang, M. Wang and L. P. He. “Penetrating performance and "self-sharpening" behavior of fine-grained tungsten heavy alloy rod penetrators,” Materials Science & Engineering A, 675, 262-270(2016). DOI: https://doi.org/10.1016/j.msea.2016.08.060

G. R. Johnson and W. H. Cook. “A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures,” Engineering Fracture Mechanics 21, 541-548(1983).

A. S. Khan and R. Liang. “Behaviors of three BCC metal over a wide range of strain rates and temperatures: experiments and modeling,” International Journal of Plasticity, 15(10), 1089-1109(1999). DOI: https://doi.org/10.1016/S0749-6419(99)00030-3

A. S. Khan, Y. S. Suh and R. Kazmi. “Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys,” International Journal of Plasticity, 20(12), 2233-2248(2004). DOI: https://doi.org/10.1016/j.ijplas.2003.06.005

F. J. Zerilli and R. W. Armstrong. “Dislocation-mechanics-based constitutive relations for material dynamics calculations,” Journal of Applied Physics, 61(5), 1816-1825(1987). DOI: https://doi.org/10.1063/1.338024

F. J. Zerilli and R. W. Armstrong. “Description of tantalum deformation behavior by dislocation mechanics based constitutive relations,” Journal of Applied Physics, 68(4), 1580-1591(1990). DOI: https://doi.org/10.1063/1.346636

F. J. Zerilli and R. W. Armstrong. “The effect of dislocation drag on the stress-strain behavior of F.C.C. metals,” Acta Metallurgica Et Materialia, 40(8), 1803-1808(1992). DOI: https://doi.org/10.1016/0956-7151(92)90166-C

J. Klepaczko. “Thermally activated flow and strain rate history effects for some polycrystalline F.C.C. metals,” Materials Science & Engineering, 18(1), 121-135(1975). DOI: https://doi.org/10.1016/0025-5416(75)90078-6

P. S. Follansbee and U. F. Kocks. “A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable.” Acta Metallurgica, 36, 81-93(1988). DOI: https://doi.org/10.1016/0001-6160(88)90030-2

D. J. Steinberg, S. G. Cochran, and M. W. Guinan. “A constitutive model for metals applicable at high-strain rate,” Journal of Applied Physics, 51(3), 1498-1504(1980). DOI: https://doi.org/10.1063/1.327799

X. Gong, J. Fan, and F. Ding. “Tensile mechanical properties and fracture behavior of tungsten heavy alloys at 25-1100 °C,” Materials Science & Engineering A, 646, 315-321(2015). DOI: https://doi.org/10.1016/j.msea.2015.08.079

G. R. Johnson and W. H. Cook. “Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures,” Engineering Fracture Mechanics, 21(1), 31-48(1985). DOI: https://doi.org/10.1016/0013-7944(85)90052-9

S. Murakami. “Continuum damage mechanics,” Netherlands: Springer(2012).

J. D. Eshelby. Proceedings of the Royal Society, A241, 376-396(1957). DOI: https://doi.org/10.1098/rspa.1957.0133

T. Mori, and K. Tanaka. “Average stress in matrix and average elastic energy of materials with misfitting inclusions,” Acta Metallurgica, 21(5), 571-574(1973). DOI: https://doi.org/10.1016/0001-6160(73)90064-3

L. L. Wang, X. L. Dong and Z. J. Sun. “Dynamic constitutive behavior of materials at high strain rate taking account of damage evolution,” Explosion and Shock Waves, 26, 193-198(2006). DOI: https://doi.org/10.1016/j.mineng.2005.09.006

Y. Z. Ma, W. S. Liu, and P. H. He. “Effects of Co addition on microstructure and properties of tungsten-based alloys by solid-solution and water-quenching,” The Chinese Journal of Nonferrous Metals, 21(5), 1016-1020(2011). DOI: https://doi.org/10.3354/cr00999

N. Senthilnathan, A. R. Annamalai and G. Venkatachalam. “Microstructure and mechanical properties of spark plasma sintered tungsten heavy alloys,” Materials Science & Engineering A, 710, 66-73(2017). DOI: https://doi.org/10.1016/j.msea.2017.10.080

F. Y. Lu and R. Chen, “Hopkinson Bar Techniques,” Science Press(2013).

W. S. Lee, G. L. Xiea, and C. F. Lin. “The strain rate and temperature dependence of the dynamic impact response of tungsten composite,” Materials Science & Engineering A, 257(2), 256-267(1998). DOI: https://doi.org/10.1016/S0921-5093(98)00852-1

Q. S. Chen, Y. G. Miao, Y. Z. Guo and Y. L. Li. Chinese Journal of High Pressure Physics, 31(6), 753-760(2017). DOI: https://doi.org/10.11858/gywlxb.2017.06.010

G. Prabhu, N. A. Kumar, M. Sankaranarayana and T. K. Nandy. “Tensile and impact properties of microwave sintered tungsten heavy alloys,” Materials Science & Engineering A, 607, 63-70(2014). DOI: https://doi.org/10.1016/j.msea.2014.03.130

C. C. Zhu, Y. T. Song, X. B. Peng, Y. P. Wei, X. Mao, W. X. Li and X. Y. Qian. “The dynamical mechanical properties of tungsten under compression at working temperature range of divertors,” Journal of Nuclear Materials, 469, 120-124(2016). DOI:


J. Lemaitre. “A course on damage mechanics,” Springer-Verlag(1996). DOI: https://doi.org/10.1007/978-3-642-18255-6

X. H. Liu, X. C. Huang, Y. Z. Chen, X. Y. Su and J. S. Zhu. “A review on constitutive models for plastic deformation of metal materials under dynamic loading,” Advances in Mechanics, 37(3), 361-374(2007). DOI: https://doi.org/10.1016/S1874-8651(08)60032-0

H. L. Wan, Q. Z. Wang, C. X. Jia and Z. Zhang. “Multi-scale damage mechanics method for fatigue life prediction of additive manufacture structures of Ti-6Al-4V,” Materials Science & Engineering A, 669, 269–278(2016). DOI: https://doi.org/10.1016/j.msea.2016.05.073

Belytschko, T., et al.. [2014] “Nonlinear finite elements for continua and structures,” John Wiley & Sons Inc.



How to Cite

“A Two-phase Constitutive Model with Damage for Tungsten Heavy Alloy” (2021) The International Journal of Multiphysics, 15(2), pp. 211-234. doi: 10.21152/1750-9548.15.2.211.