New phase change nanomaterial for solar use: synthesis and characterization


  • L Maifi
  • K Agroui
  • O Hioual
  • A Chari
  • T Karbache



In this paper, we used a commercial paraffin type C25H52 which was doped with TiO2, ALCL3, and AL2O3 in the range of 0 and 20% by mass and atom. The monitoring of the temperature over time was measured during the descent of 150°C to ambient. For all dopants, the phase change time, thermal conductivity, latent heat, and specific heat increase with the doping rate and the mass of the paraffin. The experimental results show that the phase change time, thermal conductivity, latent heat, and specific heat are more important in the case of doping with ALCL3 compared to the other two dopants.


F.L. Tan, Constrained and unconstrained melting inside a sphere, Int. Commun. Heat Mass Transfer 35 (2008) 466–475.

F.L. Tan, S.F. Hosseinizadeh, J.M. Khodadadi, L. Fan, Experimental and computational study of constrained melting of phase change materials (PCM) inside a spherical capsule, Int. J. Heat Mass Transfer 52 (2009) 3464–3472.

E. Assis, G. Ziskind, R. Letan, Numerical and Experimental Study of Solidification in a Spherical Shell, Journal of Heat Transfer, Vol. 131, 2009.

A. Felix Regin, S.C. Solanki, J.S. Saini, An analysis of a packed bed latent heat thermal energy storage system using PCM capsules: Numerical investigation, Renewable Energy 34 (2009) 1765–1773.

Nallusamy N, Velraj R. Numerical and experimental investigation on acombined sensible and latent heat storage unit integrated with solar water heating system. J Sol Energy Eng 2009;131:1–8.

L. Yang, X.S. Zhang, Performance of a new packed bed using stratified phase change capsules, International Journal of Low-Carbon Technology 7 (3) (2021) 208–214.

A. B.Shobo, A. Mawire, Numerical investigation of a packed bed thermal energy storage system for solar cooking using encapsulated phase change material, Third Southern African Solar Energy Conference SASEC,11-13 mai 2015, 254-259.

M. Lacroix, numerical simulation of a shell-and-tube latent heat thermal energy storage unit. Solar Energy, Vol. 50(4) (1993) 357-36.

C. J. Ho et J. Y. Gao, Preparation and thermophysical properties of nanoparticle-inparaffinemulsion as phase change material, Int. Comm. in Heat and Mass Transfer, Vol.36, , (2009) 467–470.

J. M. Khodadadi et S. F. Hosseinizadeh, Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage. Int. Com. in Heat and Mass Transfer, Vol. 34, pp. 534–543, (2007).

S.Wu, D. Zhu, X. Li, H. Li, J. Lei, Thermal energy storage behavior of Al2O3 _H2O nanofluids. Thermochim Acta 483:73-77.

Qinbo He, Shuangfeng Wang, Mingwei Tong etYudong Liu, Experimental study on thermophysical properties of nanofluids as phase-change material (PCM) in low temperature cool storage. Energy Conversion and Management, Vol. 64, (2012). 199–205.

Trigui A., Karkri M., Boudaya Ch., Candau Y., Ibos L., Fois M. Experimental investigation of acomposite phase change material: thermal-energy storage and release. J Compos Mater 2012[reference: JCM-12-0304].

M.A. Puerto, N.M. Balzaretti,Raman and infrared vibrational modes of tricosane paraffin under highpressure,Vibrational Spectroscopy, Vol. 75, (2014). 93–100.

Feng Zhanga, Tian-Yu Liub, Gui-Hua Houa, Rong-Feng Guana, Jun-HaoZhangc,Preparation of paraffinpoly(styrene-co-acrylic acid) phase changenanocapsules via combined miniemulsion/emulsion polymerization,Journal of Nanoscience and Nanotechnology, Vol. 18, (2018). 4413–4417.

Mohammed M. Farid , Amar M. Khudhair , Siddique Ali K. Razack , Said Al-Hallaj , A review on phase change energy storage: materials and applications, Energy Conversion and Management , Vol.45 (2004) 1597–1615. DOI:10.1016/j.enconman.2003.09.015

Lana Khanifah,Susilo Widodo, Widarto, Ngurah Made Dharma Putra, and Argo Satrio, Characteristics of Paraffin Shielding of Kartini Reactor, Yogyakarta, ASEAN Journal on Science & Technology for Development, Vol. 35, (2018). 195–198.

Belen Zalba, Jose M Marın, Luisa F. Cabeza , Harald Mehling, Review on thermal energy storage with phasechange: materials, heat transfer analysis and applications, Applied Thermal Engineering 23 (2003) 251–283.

G. Varshney, S.R. Kanel, D. Kempisty, V. Varshney, A. Agrawal, „ E. Sahle-Demessie, R.S. Varma, M.N. Nadagouda, Nanoscale TiO2 films and their application in remediation of organic pollutants,Coordination Chemistry Reviews (2015),

Bedhiaf BENRABAH, Etude des Propriétés Physico-chimiques des Couches de SnO2 Préparées par la Technique « dip-coating» , thèse de doctorat, Université des Sciences et de la Technologie Mohamed Boudiaf d’Oran « USTO »,2005. DOI: 10.22266/ijies2021.0831.04

Guillaume Müller. Conception, élaboration et caractérisation de matériaux de composition et de miIcro structure innovants pour les micro-piles à combustible à oxyde solide. Doctorat en Science des matériaux. Université Pierre et Marie Curie - Paris VI, 2012. Français.ffNNT : 2012PAO66530ff. fftel-00833281f.

MihailSecu, Corina ElisabetaSecu, Teddy Tite and SilviuPolosan; Sol-Gel Processing of Bismuth Germanate Thin-Films ; Coatings 2020, 10, 255.

Elise Berrier, élaboration par voie sol-gel et étude structurale de verres de silice destinés à la fabrication de fibres microstructurées, doctorat à Université des Sciences et Technologies de Lille ;2005.

Ecaterina Magdalena MODAN, Adriana Gabriela PLĂIAȘU ,advantages and disadvantages of chemical methods in the elaboration of nanomaterials , the annals of “dunarea de jos” university of galati fascicle ix. Metallurgy and materials science No . 1 - 2020, ISSN 2668-4748; e-ISSN 2668-4756.



How to Cite

Maifi, L., Agroui, K., Hioual, O., Chari, A. and Karbache, T. (2022) “New phase change nanomaterial for solar use: synthesis and characterization”, The International Journal of Multiphysics, 16(1), pp. 15-29. doi: 10.21152/1750-9548.16.1.15.