Design Process of IDT Aided by Multiphysics FE Analyses

Authors

  • A Martowicz
  • M Rosiek
  • M Manka
  • T Uhl

DOI:

https://doi.org/10.1260/1750-9548.6.2.129

Abstract

Presented work is devoted to a design process performed for the interdigital transducer, which is a perspective application for the area of structural health monitoring. In order to obtain the desirable characteristic of the transducer fully coupled numerical analyses were performed in ANSYS Multiphysics software. Utilised finite element models considered both structural dynamics and properties of used piezoelectric material. The process of design improvement was preceded by the sensitivity analysis. In order to search for the best electrode pattern selected geometrical features of the transducer were assumed to vary within allowed ranges. The design parameters, which were taken into account, related to the efficiency of proposed transducer design for the emission of acoustic waves in the monitored structure. The search objectives considered the criteria related to the shape of the beampattern and amplitudes of generated Lamb waves. As a result of the optimization procedure, the simultaneous increase of anti-symmetric mode amplitude and the reduction of undesirable symmetric mode amplitude of generated Lamb waves in the direction perpendicular to the transducer fingers was expected. Another aim of the optimization was to minimize the main lobe width and undesirable contribution of both symmetric and anti-symmetric waves in the parallel direction to the transducer fingers. The response surface method and genetic algorithms were used for fast and effective search through the input design domain.

References

Staszewski W. J., Ultrasonic/Guided Waves for Structural Health Monitoring, Key Engineering Materials, 2005, 293-294, 49-62. https://doi.org/10.4028/www.scientific.net/kem.293-294.49

Rose J. L., A vision of ultrasonic guided wave inspection potential, Proceedings of the Seventh ASME NDE Topical Conference NDE, 2001, Vol. 20.

Achenbach J. D., Wave Propagation in Elastic Solids, North-Holland Publishing Company, Amsterdam, 1973.

Lee B. C., Staszewski W. J., Lamb wave propagation modelling for damage detection: II. Damage monitoring strategy, Smart Mater. Struct., 2007, 16, 260-274. https://doi.org/10.1088/0964-1726/16/2/004

Ambrozinski L., Stepinski T., Packo P., Uhl T., Self-focusing Lamb waves based on the decomposition of the time-reversal operator using time-frequency representation, Mechanical Systems and Signal Processing, 2012, 27, 337-349. https://doi.org/10.1016/j.ymssp.2011.09.019

Inman D. J., Farrar C. R., Lopes V. Jr., Steffen V. Jr. [ed.]: Damage prognosis. For aerospace, civil and mechanical systems, John Willey & Sons, Ltd., Chichester, England, 2005. https://doi.org/10.1002/0470869097

Alleyne D. N., Cawley P., The interaction of Lamb waves with defects. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 1992, 39(3), 381-397. https://doi.org/10.1109/58.143172

Degertekin F. L., Khuri-Yakub B. T., Lamb wave excitation by Hertzian contacts with application, NDEIEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1997, 44, 769-779. https://doi.org/10.1109/58.655191

Dutton B., Boonsang S., Dewhurst R. J., A new magnetic configuration for a small in-plane electromagnetic acoustic transducer applied to laser ultrasound measurements: Modelling and validation, Sensors and Actuators A: Physical, 2006, 125, 249-259. https://doi.org/10.1016/j.sna.2005.07.026

Mirkhani K., Chaggares C., Masterson C., Jastrzebski M., Dusatko T., Sinclair A., Shapoorabadi R. J., Konrad A., Papini M., Optimal design of EMAT transmitters, NDT&E International, 2004, 37(3), 181-193. https://doi.org/10.1016/j.ndteint.2003.09.005

Silva M. Z., Gouyon R., Lepoutre F., Hidden corrosion detection in aircraft aluminium structures using laser ultrasonics and wavelet transform signal analysis, Ultrasonics, 2003, 41, 301-305. https://doi.org/10.1016/s0041-624x(02)00455-9

Ergun A. S., Yaralioglu G. G., Khuri-Yakub B. T.: Capacitive Micromachined Ultrasonic Transducers: Theory and Technology, Journal of Aerospace Engineering, 2003, 76-84. https://doi.org/10.1061/(asce)0893-1321(2003)16:2(76)

Ergun A. S., Huang Y., Zhuang X., Oralkan O., Yaralioglu G. G, Khuri-Yakub B. T., Capacitive Micromachined Ultrasonic Transducers: Fabrication Technology, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2005, 12, 2242-2258. https://doi.org/10.1109/tuffc.2005.1563267

Martowicz A., Rosiek M., Manka M., Uhl T., Improving the design of capacitive micromachined ultrasonic transducers aided with sensitivity analysis, International Journal of Multiphysics, 2011, 5(2), 157-172. https://doi.org/10.1260/1750-9548.5.2.157

Meynier C., Teston F., Certona D., A multiscale model for array of capacitive micromachined ultrasonic transducers, Journal of the Acoustical Society of America, 2010, 128 (5), 2549-2561. https://doi.org/10.1121/1.3493433

Wong S. H., Kupnik M., Zhuang X., Lin D.-S., Butts-Pauly K., Khuri-Yakub B., Evaluation of wafer bonded CMUTs with rectangular membranes featuring high fill factor, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2008, 55(9), 2053-2065. https://doi.org/10.1109/tuffc.897

Badcock R. A., Birt E. A., The use of 0-3 piezocomposite embedded Lamb wave sensors for detection of damage in advanced fibre composites, Smart Materials and Structures, 2000, 291-297. https://doi.org/10.1088/0964-1726/9/3/307

Schulz M. J., Pai P. F., Imman D. J., Health monitoring and active control of composite structures using piezoceramic patches, Composites, Part B, 1999, 30, 713-725. https://doi.org/10.1016/s1359-8368(99)00034-7

Raghavan A., Cesnik C. E. S., Review of Guided-wave Structural Health Monitoring. The shock and vibration digest, 2007, 39(2), 91-114. https://doi.org/10.1177/0583102406075428

Williams B. R., Park G., Inman D. J., Wilkie K. W., An Overview of Composite Actuators with Piezoceramic Fibers, Proceedings of the 20th International Modal Analysis Conference, Los Angeles, 2002, 421-427.

Sodano H. A., Park G., Inman D. J., An investigation into the performance of macro-fiber composites for sensing and structural vibration applications, Mechanical Systems and Signal Processing, 2004, 18, 683-697. https://doi.org/10.1016/s0888-3270(03)00081-5

Na J. K., Blackshire J. L., Kuhra S., Design, fabrication and characterization of single-element interdigital transducers for NDT applications, Sensors and Actuators A, 2008, 148, 359-365. https://doi.org/10.1016/j.sna.2008.08.018

Manka M., Rosiek M., Martowicz A., Uhl T., Interdigital transducers for Lamb-wave based SHM systems: design and sensitivity analysis. Mechanics And Control, 2011, 30(2). https://doi.org/10.4028/www.scientific.net/ssp.198.307

Manka M., Rosiek M., Martowicz A., Uhl T., Stepinski T., Properties of interdigital transducers for lamb-wave based SHM systems, Chang F.-K. [ed.], Structural health monitoring 2011, Condition-based maintenance and intelligent structures, Proceedings of the 8th international workshop on Structural Health Monitoring, Stanford, September 13-15, 2011, Vol. 2, 1488-1495. https://doi.org/10.1016/j.ymssp.2015.12.013

Mamishev A. V., Sundara-Rajan K., Yang F., Du Y., Zahn M., Interdigital Sensors and Transducers, Proceedings of the IEEE, 2004, 92(5). https://doi.org/10.1109/jproc.2004.826603

Castaings M., Monkhouse R. S. C., Lowe M. J. S., Cawley P., The Performance of Flexible Interdigital PVDF Lamb Wave Transducers, Acustica and Acta Acustica, 1999, 85, 842-849.

ANSYS Modeling and Meshing Guide, ANSYS Inc., Canonsburg, 2007.

http://www.smart-material.com/

Box G. E. P., Draper N. R., Empirical Model Building and Response Surfaces, John Wiley & Sons, Inc., New York, 1986.

Martowicz A., Klepka A., Uhl T., Application of Response Surface Method to model static and dynamic properties of MEMS structure, Proceedings of Multiphysics 2009, Lille, France, December 9-11, 2009. https://doi.org/10.1260/1750-9548.6.2.115

Myers R. H., Montgomery D. C., Response Surface Methodology process and product optimization using designed experiments, John Wiley & Sons, Inc., New York, 1995.

Ultrasonic Transducers Technical Notes OLYMPUS NDT http://www.olympusNDT.com

Goldberg D. E., Genetic algorithms in search, optimization, and machine learning, Addison-Wesley Publishing Company, Reading, Massachusetts, U. S. A., 1989.

Michalewicz Z., Genetic algorithms + data structures = evolution programs, Springer-Verlag, Berlin, Heidelberg 1996.

Published

2012-06-30

How to Cite

Martowicz, A., Rosiek, M., Manka, M. and Uhl, T. (2012) “Design Process of IDT Aided by Multiphysics FE Analyses”, The International Journal of Multiphysics, 6(2), pp. 129-148. doi: 10.1260/1750-9548.6.2.129.

Issue

Section

Articles

Most read articles by the same author(s)