Low order dynamical system for fluid-rigid body interaction problem using POD method


  • E Liberge
  • M Benaouicha
  • A Hamdouni




This paper describes the Reduced Order Modeling (ROM) for fluid rigid body interaction problem and discusses Proper Orthogonal Decomposition (POD) utilisation. The principal difficulty for using POD being the moving domains, a referenced fixed domain is introduced. The POD is applied for the velocity field obtained on the fixed domain. Then a method to reduce dynamical system in rigid body fluid interaction is developed. This method uses the fictitious domain method approach, which consists in treating the entire fluid-solid domain as a fluid. The rigid body is considered as a fluid, by using a high viscosity which can play the role of a penalisation factor of the rigidity constraint, and by adding a distributed Lagrange multiplied associated to this constraint in the weak formulation. The fluid flow problem is then formulated on the reference domain and POD modes are used in the weak formulation. The results are compared with computational solution and discussed.


Earl H. Dowell, Hall, and C. Kenneth. Modelling of fluid-structure interaction. Annuals Review of Fluid Mechanics, 33:445–90, 2001.

M. C. Romanowski and E. H. Dowell. Reduced order euler equation for unsteady aerodynamics flow: numerical techniques. AIAA Paper, 96, 1996.

M. L. Baker, D. L. Mingori, and P. J. Goggin. Approximate subspace iteration for constructing internally balanced reduced order model of unsteady aerodynamic systems. AIAA Paper, 96, 1996. https://doi.org/10.2514/6.1996-1441

M. Karpel. Design for active flutter suppression and gust alleviation using state-space aeroelastic modelling. J. Aircraft, 19(3):221–27, 1982. https://doi.org/10.2514/3.57379

J. L. Lumley. The structure of inhomogeneous turbulent flows. Atmospheric Turbulence and Radio Wave Propagation, vol. In A. M. Yaglom and Tararsky:166–178, 1967.

W. Cazemier, R. W. Verstappen, and A. E. P. Veldman. Proper orthogonal decomposition and low- dimensional models for driven cavity. Physics of fluids, 10.7:1685–1699, 1998. https://doi.org/10.1063/1.869686

L. Sirovich, K. S. Ball, and L. Keefe. Planes waves and structure in turbulent channel flow. Physics of fluids A2, 12:2217–2226, 1990. https://doi.org/10.1063/1.857808

C. Allery, C. Beghein, and A. Hamdouni. Applying proper orthogonal decomposition to the computation of particle dispersion in a two-dimensional ventilated cavity. Commun Nonlin Sci Numer Simul, 10(8):907–920, December 2005. https://doi.org/10.1016/j.cnsns.2004.05.005

M. A. Trindade, C. Wolter, and R. Sampaio. Karhunen-loève decomposition of coupled axial/bending vibrations of beams subject to impacts. Journal of Sound and Vibration, 279(issues 3–5):1015–1036, 2005. https://doi.org/10.1016/j.jsv.2003.11.057

P. J. Holmes, G. Berkooz, and J. L. Lumley. Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge Monographs on Mechanics, 1998. https://doi.org/10.1017/cbo9780511919701

C. Allery. Contribution a` l’identification des bifurcations et à l’ étude des écoulements fluides par des systèmes d’ordre faible (POD). PhD thesis, 2002.

G. Berkooz, P. Holmes, and J. Lumley. The proper orthogonal decomposition in the analysis of turbulent flows. Annual review of fluid Mechanics, 25:539–575, 1993. https://doi.org/10.1146/annurev.fl.25.010193.002543

L. Sirovitch. Turbulence and the dynamics of coherent structures, part i: Coherent strucures, part ii: Symmetries and transformations, part iii: Dynamics and scaling. Quarterly of Applied Mathematics, 45(3):561–590, 1987. https://doi.org/10.1090/qam/910464

N. Aubry, R. Guyonnet, and R. Lima. Spatiotemporal analysis of complex signals: Theory ans applications. Journal of Statistical Physics, 64(3/4):683–739, 1991. https://doi.org/10.1007/bf01048312

D. Rempfer. Investigations of boundary layer transition via galerkin projections on empirical eigenfunctions. Physics of Fluids, 8:175–188, January 1996. https://doi.org/10.1063/1.868825

N. Aubry, P. Holmes, J. Lumley, and E. Stone. The dynamics of coherent structures in the wall region of a turbulent boundary layer. J. Fluid Mech., 192:115–173, 1988. https://doi.org/10.1017/s0022112088001818

D. Rempfer and H. F. Fasel. Evolution of three-dimensional coherent structures in a transitional flat-plate boundary layer. J. Fluid Mech., 275:257–283, 1994. https://doi.org/10.1017/s0022112094002351

A. E. Deane, I. G. Kevrekidis, G. E. Karniadakis, and S. A. Orszag. Low-dimensional models for complex geometry flows-application to grooved channels and circular cylinders. Physics of Fluids, 3:2337–2354, October 1991. https://doi.org/10.1063/1.857881

A. Omurtag and L. Sirovich. On low-dimensional modeling of channel turbulence. Theoretical and Computational Fluid Dynamics, 13:115–127, 1999. https://doi.org/10.1007/s001620050007

P. J. Holmes, J. L. Lumley, J. C. Berkooz, J. C. Mattingly, and R. W. Wittenberg. Low dimensional models of coherent structures in turbulence. Phys. Rev. Section Phys. Lett. 4, pages 338–384, 1997. https://doi.org/10.1016/s0370-1573(97)00017-3

C. Allery, S. Guerin, A. Hamdouni, and A. Sakout. Experimental and numerical pod study of the coanda effect used to reduce self-sustained tones. Mechanics Research Communications, 31(1):105–120, January- February 2004. https://doi.org/10.1016/j.mechrescom.2003.08.003

J. Donea, A. Huerta, J.-P. Ponthot, A. Rodriguez-Ferran, E. Stein, R. de Borst, and T. J. R. Hughes. Arbitrary Lagrangian-Eulerian Methods, volume 1, chapter 14, page 413–437. 2004. https://doi.org/10.1002/9781119176817.ecm2009

T. Nomura and T. J. R. Hughes. An arbitrary lagrangian-eulerian finite element method for interaction of fluid and rigid body. Com. Meth. in Applied Mech. and Eng., 95:115–138, 1992. https://doi.org/10.1016/0045-7825(92)90085-x

J. Sarrate, A. Huerta, and J. Donea. Arbitrary lagrangian-eulerian formulation for fluid-rigid body interaction. Com. Meth. in Applied Mech. and Eng., 190(6):3171–3188, 2001. https://doi.org/10.1016/s0045-7825(00)00387-x

D. Abouri, A. Parry, A. Hamdouni, and E. Longatte. A stable fluid structure interaction algorithm: application to industrial problems. J. Pres. Ves. Tech., 128(4):516–524, November 2006.https://doi.org/10.1115/1.2349560

G. H. Koopmann. The vortex wakes of vibrating cylinders at low reynolds numbers. J. Fluid Mech., 28:501–512, 1967. https://doi.org/10.1017/s0022112067002253

N. A. Patankar, P. Singh, D. D. Joseph, R. Glowinski, and T.-W. Pan. A new formulation of the distributed lagrange multiplier/fictitious domain method for particulate flows. International Journal of Multiphase Flows, 26:1509–1524, 2000. https://doi.org/10.1016/s0301-9322(99)00100-7

P. Laure, G. Beaume, O. Basset, L. Silva, and T. Coupez. Numerical methods for solid particles in particulate flow simulations. E. J. of Comp. Mech., 16/3-4:365–383, 2007. https://doi.org/10.3166/remn.16.365-383



How to Cite

Liberge, E., Benaouicha, M. and Hamdouni, A. (2008) “Low order dynamical system for fluid-rigid body interaction problem using POD method”, The International Journal of Multiphysics, 2(1), pp. 59-82. doi: 10.1260/175095408784300243.