Electromagnetism based atmospheric ice sensing technique - A conceptual review

U Mughal, M Virk, M Mustafa


Electromagnetic and vibrational properties of ice can be used to measure certain parameters such as ice thickness, type and icing rate. In this paper we present a review of the dielectric based measurement techniques for matter and the dielectric/spectroscopic properties of ice. Atmospheric Ice is a complex material with a variable dielectric constant, but precise calculation of this constant may form the basis for measurement of its other properties such as thickness and strength using some electromagnetic methods. Using time domain or frequency domain spectroscopic techniques, by measuring both the reflection and transmission characteristics of atmospheric ice in a particular frequency range, the desired parameters can be determined.

Full Text:



Auty R. P. and Cole R. H., J. chem Phys. 20, 1309, 1952. CrossRef

Benedict W. S., Gailar N., Plyer E. K., Journal of Chemical Physics, 21, 1301, 1953. CrossRef

Benedict W. S., Claassen I-I. I-I. and Shaw J. I-I, Journal of Chemical Physics, 24, pp 1139, 1956. CrossRef

Bertie J. E. and Whalley E., J. chem. Phys. 40, 1637, 1964. CrossRef

Chan R. K., Davidson D. W. and Whalley E., J. chem. Phys. 43, 2376, 1965. CrossRef

Cottrell T. L., The strengths of chemical bonds, Butterworths, London, 1958.

Craig D. F. and Craig D. B., An investigation of icing events on haeckel hill, Proceedings of Boreas III Conference, Finland, 1995.

Darling B. T. and Dennison D. M., Phys Rev. 57, 128, 1940. CrossRef

Dennison D. M., Rev. mod. Phys, 12, 175, 1940. CrossRef

Eisenberg D. and Kauzmann W. The Structure and Properties of Water, Oxford University Press, 1969.

Fikke S., et. al., Cost 727 - Atmospheric icing on structures; measurement and data collection on icing, ISSN 1422-1381, MeteoSwiss, 2007.

Foder H. F., ISO 12494 - Atmospheric icing on structures and how to use it., Proc. of the llth International Offshore and Polar Engineering Conference, ISBN 1-880653-51-6, June 2001.

Haas C. and Hornig D. F., J. chem Phys. 32, 1763, 1960. CrossRef

Herzberg G., Molecular spectra and molecular structure, 2nd Edn., Van Nostrand, New York, 1950.

Homola M. C., Nicklasson P. J. and Sundsbo P. A., Ice sensors for wind turbines. Cold Regions Science and Technology, 46: p. 125-131, 2006. CrossRef

Homola M. C., Atmospheric icing on wind turbines; Modeling and consequences for energy production, ISBN 978-82-471-3082-7, NTNU, 2011.

Hornig D. F., White H. F. and Reding F. P., Spectrochim. Acta, 12, 338, 1958. CrossRef

Humbel F., Jona F. and Scherrer P., Helv. phys. Acta. 26, 17, 1953.

Kao K. C., Dielectric phenomena in solids, Elsevier Academic Press, ISBN 0-12-396561-6, 2004.

Lee H. and Seegmiller B., Ice detector and de-icing fluid effectiveness monitoring system, United States, 1996.

Magenheim et. al., Microwave ice detector, US Patent 4054255, 1977.

Seegmillar H. L. B., Ice detector and deicing fluid effectiveness monitoring system, US Patent 5523959, 1996.

Seifert H., Technical Requirements for Rotor Blades Operating in Cold Climates, Proceedings of the BOREAS II conference, Pyhatunturi, Finland, 2003.

Wagman D. D., Evans W. H., Halow I., Parkes V. B., Bailey S. M. and Schv R. H., Miao J., National Bureau of Standards Technical Note, 270-1, 1965.

Wallace R. W. et. al., Ice Thickness Detector, US Patent 6384611 Bl, 2002.

Watkins et. al., Ice detector, US Patent 4604612, 1986.

Weinstein et. al., Ice sensor, US Patent 4766369, 1988.

Williams G., Polymers, 4, 27, 1963.

Wilson G. J., Chan R. K., Davidson D. W. and Whalley E., J. chem. Phys. 43, 2384, 1965. CrossRef

Whalley E., Davidson D. W. and Heath J. B. R., J. chem. Phys. 45, 3976, 1966. CrossRef

DOI: http://dx.doi.org/10.1260/1750-9548.6.4.341

Copyright (c) 2016 The International Journal of Multiphysics