A benchmark for some bulk properties of bcc iron

Authors

  • E Guler
  • M Guler

DOI:

https://doi.org/10.1260/1750-9548.7.2.95

Abstract

Some bulk properties of bcc iron were calculated. Structural and elastic properties such as cohesive energy, bulk modulus, typical elastic constants and vacancy formation energy were calculated for zero Kelvin temperature. All obtained results during the study were compared with the both previous experimental and theoretical results. Obtained results for the present study show well agreement with literature.

References

A. B. Alchagirov et al., Energy and pressure versus volume: Equations of state motivated by the stabilized jellium model, Phys. Rev. B, (2001), 63, p. 4115.

P. Käckell, B. Wenzien, and F. Bechstedt, Influence of atomic relaxations on the structural properties of SiC polytypes from ab initio calculations, Phys. Rev. B, (1994), 50, p. 17037. https://doi.org/10.1103/physrevb.50.17037

C. Persson and E. Janzén, J. Phys.: Condens. Matter, Electronic band structure in hexagonal close-packed Si polytypes, 1998, 10, p. 10549. https://doi.org/10.1088/0953-8984/10/47/006

E. Schröder, Nematic liquid-crystal director configuration for general elastic coefficients, Phys. Rev. E, 2000, 62, p. 8830. https://doi.org/10.1103/physreve.62.8830

E. Wachowicz and A. Kiejna, Bulk and surface properties of hexagonal-close packed Be and Mg, J. Phys.: Condens. Matter., 2001, 13, p. 10767. https://doi.org/10.1088/0953-8984/13/48/303

Y. Yourdshahyan et al., First-principles calculations on the atomic and electronic structure of κ-Al2O3, Phys. Rev. B, 1997, 56, p. 8553. https://doi.org/10.1103/physrevb.56.8553

Y. Yourdshahyan et al., Theoretical Structure Determination of a Complex Material: κ-Al2O3, J. Am. Ceram. Soc., 1999, 82, p. 1365.

Y. Mishin et al., Interatomic potentials for monoatomic metals from experimental data and ab initio calculations, Phys. Rev. B, 1999, 59, p. 3393. https://doi.org/10.1103/physrevb.59.3393

M. Müler, P. Erhart and K. Albe, Analytic bond-order potential for bcc and fcc iron- comparison with established embedded-atom method potentials, J. Phys.: Condens. Matter. 2007, 19, 326220. https://doi.org/10.1088/0953-8984/19/32/326220

F. D. Murnaghan, Proc. Natl. Acad. Sci., The Compressibility of Media under Extreme Pressures, 1944, 30, p. 244.

F. Birch, Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300°K, J. Geophys. Res., 1978, 83, p. 1257. https://doi.org/10.1029/jb083ib03p01257

V. V. Bulatov and Wei Cai, Computer simulations of Dislocations, Oxford University Press, 2006.

D. Hull and D. J. Bacon: Introduction to Dislocations, 4th ed.,Butterworth Heinemann, Oxford, pp. 14-20 and pp. 110-114, 2001.

S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys., 1995, 117, p. 1.

http://lammps.sandia.gov

M. W. Finnis and J. E. Sinclair, A simple empirical N-body potential for transition metals, Phil. MagA., 1984, 50, p. 45.

F. D. Murnaghan, The Compressibility of Media under Extreme Pressures, Proc. Natl. Acad. Sci., 1944, 50, p. 244.

L. Ventelon et al., Ab initio investigation of radiation defects in tungsten: Structure of self-interstitials and specificity of di-vacancies compared to other bcc transition metals, J. Nuc. Mater., 2012, 425, p. 16. https://doi.org/10.1016/j.jnucmat.2011.08.024

W. G. Wolfer, Fundamental Properties of Defects in Metals, Compreh. Nuc. Mater., 2012, 1, 1.

J. Uppenbrink, R. L. Johnston, J. N. Murrell, Modelling transition metal surfaces with empirical potentials, Surface Sci., 1994, 304, p. 223. https://doi.org/10.1016/0039-6028(94)90767-6

K. Yin, D. Zou, J. Zhong, D. Xu, Comput. Mater. Sci., A new method for calculation of elastic properties of anisotropic material by constant pressure molecular dynamics, 2007, 38, p. 538. https://doi.org/10.1016/j.commatsci.2005.10.008

See Ref. 12.

M. Wen, A. Barnoush, K. Yokogawa, Calculation of all cubic single-crystal elastic constants from single atomistic simulation: Hydrogen effect and elastic constants of nickel. Comp. Phys. Comm., 2011, 182, p. 1621. https://doi.org/10.1016/j.cpc.2011.04.009

M. K. Niranjan, First Principles Study of Electronic, Optical and Elastic Properties of cubic anand Orthorhombic RhSi, Intermetallics, 2012, 26, p. 150. https://doi.org/10.1016/j.intermet.2012.03.049

T. Korhonen, M. J. Puska and R. M. Nieminen, Vacancy-formation energies for fcc and bcc transition metals, Phys. Rev. B, 1995, 51, p. 9526. https://doi.org/10.1103/physrevb.51.9526

G. Simonelli, R. Pasianot, E. J. Savino, Embedded - Atom - Method Interatomic Potentials for BCC - Iron, Mater. Res. Soc. Symp. Proc., (1993) 291, p. 567. https://doi.org/10.1557/proc-291-567

S. L. Dudarev and P. M. Derlet, A magnetic interatomic potential for molecular dynamics simulations, J. Phys.: Condens. Matter., 2005, 17, p. 7097. https://doi.org/10.1088/0953-8984/17/44/003

Published

2013-06-30

How to Cite

Guler, E. and Guler, M. (2013) “A benchmark for some bulk properties of bcc iron”, The International Journal of Multiphysics, 7(2), pp. 95-100. doi: 10.1260/1750-9548.7.2.95.

Issue

Section

Articles