An integrated multiphysics model for friction stir welding of 6061 Aluminum alloy

M Nourani, A Milani, S Yannacopoulos, C Yan


This article presents a new, combined ‘integrated’- ‘multiphysics’ model of friction stir welding (FSW) where a set of governing equations from non-Newtonian incompressible fluid dynamics, conductive and convective heat transfer, and plain stress solid mechanics have been coupled for calculating the process variables and material behaviour both during and after welding. More specifically, regarding the multiphysics feature, the model is capable of simultaneously predicting the local distribution, location and magnitude of maximum temperature, strain, and strain rate fields around the tool pin during the process; while for the integrated (post-analysis) part, the above predictions have been used to study the microstructure and residual stress field of welded parts within the same developed code. A slip/stick condition between the tool and workpiece, friction and deformation heat source, convection and conduction heat transfer in the workpiece, a solid mechanics-based viscosity definition, and the Zener-Hollomon- based rigid-viscoplastic material properties with solidus cut-off temperature and empirical softening regime have been employed.

In order to validate all the predicted variables collectively, the model has been compared to a series of published case studies on individual/limited set of variables, as well as in-house experiments on FSW of aluminum 6061.

Full Text:



Thomas, W.M., Nicholas, E.D., Needham, J.C., Murch, M.G., Temple-Smith, P., & Dawes, C.J. (1991). Friction Welding. Cambridge, UK: The Welding Institute TWI Patent Application No 91259788.

Shtrikman, M.M. (2008). Current state and development of friction stir welding Part 3. Welding International, 22, 806-815. CrossRef

Nourani, M., S. Milani, A., & Yannacopoulos, S. (2011). Taguchi optimization of process parameters in friction stir welding of 6061 aluminum alloy: a review and case study, Engineering, 3(2), 144-155. CrossRef

Colegrove, P., Shercliff, H., & Threadgill, P. (2003) Modelling and development of the Trivex (TM) friction stir welding tool, Proc. 4th International Symposium on Friction Stir Welding, TWI Ltd., Park City, (CD-ROM).

Schmidt, H., & Hattel, J. (2005) CFD modelling of the shear layer around the tool probe in friction stir welding, Proc. of Friction Stir Welding and Processing III, K. V. Jata et al, eds., TMS, San Francisco, 225-232.

Long, T., Tang, W., & Reynolds, A. P. (2007) Process response parameter relationships in aluminium alloy friction stir welds, Sci. Tech. Weld. Join., 12(4), 311-318. CrossRef

Arora, A., Zhang, Z., De, A., & Debroy, T. (2009) Strains and strain rates during friction stir welding, Scrip. Mater., 61(9), 863-866. CrossRef

Chen, C., & Kovacevic, R. (2003) Finite element modeling of friction stir welding-thermal and thermomechanical analysis, Inter. J. Mach. Tool. Manuf., 43 (13), 1319-1326. CrossRef

Schmidt, H., & Hattel, J. (2005) A local model for the thermomechanical conditions in friction stir welding, Model. Sim. Mater. Sci. Eng., 13(1), 77-93.

Fratini, L., Buffa, G., & Palmeri, D. (2009) Using a neural network for predicting the average grain size in friction stir welding processes, Comp. Struc., 87(17-18), 1166-1174. CrossRef

Zhang, Z., & Zhang, H. W. (2009) Numerical studies on controlling of process parameters in friction stir welding, J. Mater. Proc. Tech., 9(2005), 241-270.

Azimzadegan, T., & Serajzadeh, S. (2010) Thermo-mechanical modeling of friction stir welding, Int. J. Mater. Research, 101(3), 390-397. CrossRef

Assidi, M., Fourment, L., Guerdoux, S., & Nelson, T. (2010) Friction model for friction stir welding process simulation: calibrations from welding experiments, Inter. J. Mach. Tool. Manuf., 50(2), 143-155. CrossRef

Hamilton, R., Mackenzie, D., & Li, H. (2010) MultiI-physics simulation of friction stir welding process, Eng. Comput., 27(8), 967-985. CrossRef

Aval, H. J., Serajzadeh, S., & Kokabi, A. H. (2011) Theoretical and experimental investigation into friction stir welding of AA 5086, Inter. J. Adv. Manuf. Tech., 52(5-8), 531-544. CrossRef

Colligan, K. J., & Mishra, R. S. (2008) A conceptual model for the process variables related to heat generation in friction stir welding of aluminum, Scrip. Mater., 58(5), 327-331. CrossRef

Heurtier, P., Jones, M. J., Desrayaud, C., Driver, J. H., Montheillet, F., Allehaux, D. (2006) Mechanical and thermal modelling of friction stir welding, J. Mater. Proc. Technol., 171(3), 348-357. CrossRef

Hattel, J. H., Schmidt, H., & Tutum, C. (2009). Thermomechanical modelling of friction stir welding. Trends in Welding Research, Proceedings of the 8th International Conference, ASM, Stan A. David Ed., 1-10.

Radaj, D. (2002). Integrated finite element analysis of welding residual stress and distortion. The Proceedings of the 6th Mathematical Modelling of Weld Phenomena, 469-485.

Williams, S. W., Colegrove, P. A., Shercliff, H., Prangnell, P., Robson, J., & Withers, P. (2006). Integrated modelling of the friction stir welding process. The Proceedings of the 6th International Symposium on Friction Stir Welding, 1-10.

Kamp, N., Colegrove, P. A., Shercliff, H. R., & Robson, J. D. (2010). Microstructure - property modelling for friction stir welding of aerospace aluminium alloys. The Proceedings of the 8th International Symposium on Friction Stir Welding, 1-20.

Gallais, C., Denquin, A., Bréchet, Y., & Lapasset, G. (2008). Precipitation microstructures in an AA6056 aluminium alloy after friction stir welding: Characterisation and modelling. Materials Science and Engineering A, 496, 77-89. CrossRef

Hattel, J. H. (2008). Integrated modelling in materials and process technology. Materials Science and Technology, 24(2), 137-149. CrossRef

Hersent, E., Driver, J. H., Piot, D., & Desrayaud, C. (2010). Integrated modelling of precipitation during friction stir welding of 2024-T3 aluminium alloy. Materials Science and Technology, 26(11), 1345-1352. CrossRef

Simar, A., Bréchet, Y., Meester, B. de, Denquin, A., Gallais, C., & Pardoen, T. (2012). Integrated modeling of friction stir welding of 6xxx series Al alloys: Process, microstructure and properties. Progress in Materials Science, 57(1), 95-183. CrossRef

Feng, Z., Wang, X.-L., David, S. A, & Sklad, P. S. (2007). Modelling of residual stresses and property distributions in friction stir welds of aluminium alloy 6061-T6. Science and Technology of Welding & Joining, 12(4), 348-356. CrossRef

Mapelli, C., & Bergami, L. (2006). Simulation of the inverse extrusion of brass rod by the coupling of fluid mechanical, thermal and ALE modules. The Proceedings of the COMSOL Users Conference 2006, Milan, 1-6.

Vuyst, T. D., Magotte, O., Robineau, A., Goussain, J.-C., & D'Alvise, L. (2006). Multiphysics simulation of the material flow and temperature field around FSW tool. The Proceedings of the 6th International Symposium on Friction Stir Welding, 1-19.

Deloison, D., Marie, F., Guerin, B., & Journet, B. (2008). Multi-physics modelling of bobbin-tool friction stir welding - simulation and experiments. The Proceedings of the 7th International Symposium on Friction Stir Welding, 1-12.

Lopez, R., Ducoeur, B., Chiumenti, M., Meester, B. D., & Saracibar, C. A. D. (2008). Modeling precipitate dissolution in hardened aluminium alloys using neural networks. International Journal of Material Forming, 1, 1291-1294. CrossRef

Vuyst, T. D., Madhavan, V., Ducoeur, B., Simar, A., Meester, B. D., & Alvise, L. D. (2008). A thermo-fluid / thermo-mechanical modelling approach computing temperature cycles and residual stresses in FSW. The Proceedings of the 7th International Symposium on Friction Stir Welding, 1-19.

Hamilton, R., MacKenzie, D., & Li, H. (2010). Multi-physics simulation of friction stir welding process. Engineering Computations, 27(8), 967-985. CrossRef

Jacquin, D., Meester, B. D., Simar, A., Deloison, D., Montheillet, F., & Desrayaud, C. (2011). Asimple Eulerian thermomechanical modeling of friction stir welding. Journal of Materials Processing Tech., 211(1), 57-65. CrossRef

Crumbach, M., Goerdeler, M., Gottstein, G., Neumann, L., Aretz H., & Kopp R. (2004). Through-process texture modelling of aluminium alloys. Model. Simul. Mater. Sci. Eng., 12(1), S1-S18. CrossRef

Bellini, A., Thorborg J., & Hattel J. H. (2006). Thermo-mechanical modelling of aluminium cast parts during solution treatment. Model. Simul. Mater. Sci. Eng., 14, 677-688. CrossRef

Kermanpur, A., Lee, P. D., Tin S., & McLean M. (2005) Integrated model for tracking defects through full manufacturing route of aerospace discs. Mater. Sci. Technol., 21(4), 437-444. CrossRef

Gandin, Ch.-A., Brechet, Y., Rappaz, M., Canova, G., Ashby M., & Schercliff H. (2002). Modelling of solidification and heat treatment for the prediction of yield stress of cast alloys. Acta Mater., 50, 901-927. CrossRef

Myhr, O. R., Grong, O., Fjaer H. G., & Marioara C. D., (2004). Modelling of the microstructure and strength evolution in Al-Mg-Si alloys during multistage thermal processing. Acta Mater., 52(17), 4997-5008. CrossRef

Lundback, A., Alberg, H., & Henrikson P. (2005). Simulation and validation of TIG-welding and post weld heat treatment of an Inconel 718 plate. The proceeding of the Mathematical modelling of weld phenomena 7, (H. Cerjak et al. ed.), Graz, Technical University of Graz, 683-696.

Nourani, M., S. Milani, A., Yannacopoulos, S., & Yan, C. (2012) Predicting grain size distribution in friction stir welded 6061 aluminum, The 9th International Symposium on Friction Stir Welding, Huntsville, USA, 1-9.

Nourani, M., S. Milani, A., & Yannacopoulos, S (2012) Predicting residual stresses in friction stir welding of aluminum alloy 6061 using an integrated multiphysics model, Submitted to the 9th International Conference on Residual Stresses (ICRS 9), Garmisch-Partenkirchen, Germany.

Versteeg, H. K., & Malalasekera, W. (1995). An introduction to computational fluid dynamics the finite volume method, Longman Scientific & Technical, New York.

Nourani, M., S. Milani, A., & Yannacopoulos, S. (2011). A new approach to measure stain during friction stir welding using visioplasticity, Proc of ASME Conference, Denver, 1-7

Xu, S., & Deng, X. (2008). A study of texture patterns in friction stir welds. Acta Materialia, 56, 1326-1341. CrossRef

Atharifar, H., Lin, D., & Kovacevic, R. (2009) Numerical and experimental investigations on the loads carried by the tool during friction stir welding, J Mater Eng Perform, 339-350.

Lewis, R., Nithiarasu, P., & Seetharamu, K. (2004). Fundamentals of the finite element method for heat and fluid flow, John Wiley & Sons, Ltd, New York.

Sellars C. M. & Tegart W. J.M. (1966). On the mechanism of hot deformation. Acta Metall., 14, 1136-1138. CrossRef

Sheppard T. & Wright D. (1979). Determination of flow stress: Part 1 constitutive equation for aluminum alloys at elevated temperatures. Met. Technol., 6, 215-223. CrossRef

Colegrove, P. A., Shercliff, H. R., & Zettler, R. (2007). Model for predicting heat generation and temperature in friction stir welding from the material properties. Science and Technology, 12(4), 284-298.

Tello, K., Gerlich, A., & Mendez, P. (2010). Constants for hot deformation constitutive models for recent experimental data, Sci Tech Weld Join, 15(3), 260-266. CrossRef

Wriggers, P. (2008). Nonlinear Finite Element Methods., Springer-Verlag Berlin Heidelberg, Germany.

Long, T., & Reynolds, A. P. (2006). Parametric studies of friction stir welding by commercial fluid dynamics simulation. Science And Technology, 11(2), 200-209.

Seidel, T. U., & Reynolds, A. P. (2003). Two-dimensional friction stir welding process model based on fluid mechanics. Science And Technology, 175-184.

Sheppard, T., & Jackson, A. (1997). Constitutive equations for use in prediction of flow stress during extrusion of aluminum alloys. Materials Science and Technology, 13(March), 203-209. CrossRef

Wang, H., Colegrove, P. A., Mayer, H. M., Campbell, L., & Robson, J. D. (2010). Material constitutive behaviour and microstructure study on aluminum alloys for friction stir welding. Advanced Material Research, 89-91, 615-622. CrossRef

Schneider, J., Beshears, R., & Nunes, A. C. (2006). Interfacial sticking and slipping in the friction stir welding process. Materials Science and Engineering A, 436, 297-304.

Arbegast W.J. (2003) Modeling friction stir joining as a metal working process, in Hot deformation of aluminum alloys, ed. Z. Jin. TMS Warrendale.

Colligan, K. (1999). Material flow behavior during friction stir welding of aluminum. Welding Journal, 78(7), 229-237.


Copyright (c) 2016 The International Journal of Multiphysics