A thermo fluid dynamic model of wood particle gasification- and combustion processes

G Boiger

Abstract


In order to qualitatively understand and evaluate the thermo- fluid dynamic situation within a wood gasification reactor, a 1D particle model has been created. The presented tool accounts for the highly in- stationary, kinetic- and thermo chemical effects, leading to partial gasification and combustion of a wood particle embedded within a packed bed collective. It considers the fluid- dynamic situation within the changing porous bulk structure of the packed bed, its impact on species- and heat transition mechanisms, the energy- and mass balances of wood, coal, pyrolysis-gas, wood- gas and off- gas phases, the thermodynamics of locally developing gasification- and combustion reaction equilibria, as well as the presence of the chemical species hydrogen, water, carbon (di-) oxide, methane, oxygen, solid carbon and gaseous, longer chain hydrocarbons from pyrolysis.

Model results can be shown to yield very good, qualitative agreement with measurements, found in literature.


Full Text:

PDF

References


T. B. Reed, M. Markson (2009). A Predictive Model for Stratified Downdraft Gasification, Progress in Biomass Conversion, Academic Press, New York; Vol.4, (1983), pp. 217-254.

A. Anca-Couce, N. Zobel, (2012). Numerical analysis of a biomass pyrolysis particle model: Solution method optimized for the coupling to reactor models, Berlin Institute of Technology, Department of Energy Engineering, Technologies for Renewable Energies, Germany. Fuel; Vol.97 (2012) 80-88. CrossRef

F. V. Tinaut, A. Melgar, J. F. Peerez, A. Horillo (2008). Effect of biomass particle size and air superficial velocity on the gasification process in a downdraft fixed bed gasifier. An experimental and modelling study, School of Engineering, University of Valladolid, Spain, Engineering Faculty, University of Antioquia, Colombia, CIDAUT Research and Development Center in Transport and Energy, Spain. Fuel Processing Technology; Vol.89, (No.11), November 2008, pp. 1076-1089. CrossRef

Ch. Bruch (2001). Beitrag zur Modellierung der Festbettverbrennung in automatischen Holzfeuerungen. PhD thesis. Eidegenoessische technische Hochschule Zuerich, Switzerland, Diss. ETH Nr. 14040, 2001.

N. Prakash, T. Karunanithi (2008). Kinetic Modeling in Biomass Pyrolysis -A Review, Department of Chemical Engineering, Annamalai University, Annamalai Nagar. INSInet Publication, Journal of Applied Sciences Research; Vol.4, (No.12): 1627-1636, 2008.

S. Shabbar, I. Janajreh, (2012). Thermodynamic equilibrium analysis of coal gasification using Gibbs energy minimization method, Masdar Institute of Science and Technology (MIST), Abu Dhabi. Energy Conversion and Management; Vol.65, (2013), 755-763. CrossRef

M. Fatehi, M. Kaviany, (1994). Adiabatic Reverse Combustion in a Packed Bed, Department of Mechanical Engineering and Applied Mechanics, University of Michigan. Combustion and Flame; Vol.99, (1994), 1-17. CrossRef

M. C. Melaaen (1996). Numerical analysis of heat and mass transfer in drying and pyrolysis of porous media. Telemark Institute of Technology, Norway. Numerical Heat Transfer, Part A: Applications; 29:4, 331-355. CrossRef

A. Galgano, C. Di Blasi, (2004). Modeling the propagation of drying and decomposition fronts in wood, Dipartimento di Ingeneria Chimica, Universita degli Studi di Napoli. Combustion and Flame,;Vol.139, (2004), 16-27. CrossRef

Ludwig Prandtl, Fuehrer durch die Stroemungslehre, Vieweg Verlag, H. Oertel (Hrsg.) 2002.

G. Job, F. Herrmann, (2005). Chemical potential - a quantity in search of recognition, Institut fuer Physikalische Chemie, Universitaet Hamburg, Abteilung fuer Didaktik der Physik, Universitaet Karlsruhe. European Journal of Physics; Vol.27, (2006), 353-371. CrossRef

S. Jarungthammachote, A. Dutta, (2008). Equilibrium modeling of gasification: Gibbs free energy minimization approach and ist application to spouted bed and spout - fluid bed gasifiers, Energy Field of Study, School of Environment, Resources and Development, Asian Institute of Technology, Thailand. Energy Conversion and Management, 01/2008; DOI:10.1016/j.enconman.2008.01.006;

S. Gordon, B. J. McBride, (1994). Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications, I. Analysis, Sanford Gordon and Associates, Cleveland Ohio, Lewis Research Center, Cleveland, Ohio. NASA Reference Publication 1311, 1994.

B. J. McBride, S. Gordon, M. A. Reno, (1993). Coefficients for Calculating Thermodynamic Transport Properties, Lewis Research Center, Cleveland, Ohio, Sanford Gordon and Associates, Cleveland Ohio, Heidelberg College, Triffin, Ohio. NASA Technical Memorandum 4513, 1993.

M. Mataln, G. Boiger, W. Brandstätter, B. Gschaider, (2008). Simulation of Particle Filtration Processes in Deformable Media, Part 1: Fluid-Structure Interaction, ICE Stroemungsforschung GmbH., Montanuniversitaet Leoben. Int. Journal of Multiphysics, Vol.2, (No.2), July 2008, pp. 179-189(11). Link

G. Boiger, M. Mataln, W. Brandstätter, B. Gschaider, (2008). Simulation of Particle Filtration Processes in Deformable Media, Part 2: Large Particle Modelling, ICE Stroemungsforschung GmbH., Montanuniversitaet Leoben. Int. Journal of Multiphysics, Vol.2, (No.2), July 2008, pp. 191-206(16)8. Link

G. Boiger, M. Mataln, W. Brandstätter, (2009). Simulation of Particle Filtration Processes in Deformable Media, Part 3.1: Basic concepts and particle-fluid force implementation of a non- spherical dirt particle solver, ICE Stroemungsforschung GmbH., Montanuniversitaet Leoben. Int. Journal of Multiphysics, Vol.3, (No.4), March 2010, pp. 407-232(26). Link

G. Boiger, M. Mataln, W. Brandstätter, (2009). Adaptive time stepping for explicit Euler implementation of spherical and non-spherical particle speed up. ICE Stroemungsforschung GmbH., Montanuniversitaet Leoben. Int. Journal of Multiphysics; Vol.3, (No.3), August 2009, pp. 267-291(25). Link

C. Di Blasi, (2009). Combustion and gasification rates of lignocellulosic chars. Dipartimento di Ingeneria Chimica, Universita degli Studi di Napoli. Progress in Energy and Combustion Science; Vol.35, (2009), 121-140. CrossRef

K. W. Ragland, D. J. Aerts, (1990). Properties of Wood for Combustion Analysis. Department of Mechanical Engineering, University of Wisconsin-Madison. Bioresource Technology; Vol.37, (1991), 161-168. CrossRef

IUPAC Compendium of Chemical Terminology (the "Gold Book"). doi:10.1351/goldbook.A00446 (Version: 2.3.1).




DOI: http://dx.doi.org/10.1260/1750-9548.8.2.203

Copyright (c) 2016 The International Journal of Multiphysics