System Dynamic modelling approach for resolving the thermo- chemistry of wood gasification

G Boiger

Abstract


For Multiphysics problems that require a thorough understanding of multiple, influential, highly transient process parameters, a System Dynamic model can constitute either an alternative option, or a compact prelude to a more expensive 3-D Finite Element or Finite Volume model. As a rather uncommon example for the application of such a modelling method, this work presents a System Dynamic modelling concept, devised for resolving the thermo-chemistry within a wood gasification reactor. It compares the modelling concept as well as its results to a classic, thermo-chemical solution algorithm based on the minimization of LaGrangian Multipliers for resolving the gasification equilibrium equations. In contrast to the latter, the System Dynamic solver can consider the impact of reaction kinetics as well as molecular mass transfer effects on the gasification equilibrium. Thus the transient production rates of methane, hydrogen, carbon (di-) oxide and water, as well as the residual amounts of pyrolysis gas and oxygen, which occur during the gasification of a wood particle, can be predicted.

Full Text:

PDF

References


T. B. Reed, M. Markson (2009). A Predictive Model for Stratified Downdraft Gasification, Progress in Biomass Conversion, Academic Press, New York; Vol. 4, (1983), pp. 217–254

G. Boiger, (2014). A thermo fluid dynamic model of wood particle gasification and combustion processes, Institute of Computational Physics (ICP), School of Engineering, Zurich University of Applied Sciences (ZHAW), Winterthur, Switzerland, Int. Journal of Multiphysics, Vol. 8, (No. 2), July 2014, pp. 203–230. Link

N. Prakash, T. Karunanithi, (2008). Kinetic Modeling in Biomass Pyrolysis – A Review, Department of Chemical Engineering, Annamalai University, Annamalai Nagar. INSInet Publication, Journal of Applied Sciences Research; Vol. 4, (No. 12): 1627–1636, 2008.

S. Shabbar, I. Janajreh, (2012). Thermodynamic equilibrium analysis of coal gasification using Gibbs energy minimization method, Masdar Institute of Science and Technology (MIST), Abu Dhabi. Energy Conversion and Management; Vol. 65, (2013), 755–763. CrossRef

G. Job, F. Herrmann, (2005). Chemical potential – a quantity in search of recognition, Institut fuer Physikalische Chemie, Universitaet Hamburg, Abteilung fuer Didaktik der Physik, Universitaet Karlsruhe. European Journal of Physics; Vol. 27, (2006), 353–371. CrossRef

S. Jarungthammachote, A. Dutta, (2008). Equilibrium modeling of gasification: Gibbs free energy minimization approach and its application to spouted bed and spout – fluid bed gasifiers, Energy Field of Study, School of Environment, Resources and Development, Asian Institute of Technology, Thailand. Energy Conversion and Management, 01/2008; DOI:10.1016/j.enconman.2008.01.006.

S. Gordon, B. J. McBride, (1994). Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications, I. Analysis, Sanford Gordon and Associates, Cleveland Ohio, Lewis Research Center, Cleveland, Ohio. NASA Reference Publication 1311, 1994.

B. J. McBride, S. Gordon, M. A. Reno, (1993). Coefficients for Calculating Thermodynamic Transport Properties, Lewis Research Center, Cleveland, Ohio, Sanford Gordon and Associates, Cleveland Ohio, Heidelberg College, Triffin, Ohio. NASA Technical Memorandum 4513, 1993.

C. Di Blasi, (2009). Combustion and gasification rates of lignocellulosic chars. Dipartimento di Ingeneria Chimica, Universita degli Studi di Napoli. Progress in Energy and Combustion Science; Vol. 35, (2009), 121–140. CrossRef

K.W. Ragland, D.J. Aerts, (1990). Properties of Wood for Combustion Analysis. Department of Mechanical Engineering, University of Wisconsin-Madison. Bioresource Technology; Vol.37, (1991), 161–168. CrossRef

IUPAC Compendium of Chemical Terminology (the “Gold Book”). doi:10.1351/goldbook.A00446 (Version: 2.3.1).

W. Peters, G.W. Lask, (1962). The theory of gasification and its application to graphite and Metallurgical coke, Bergbau-Forschung GmbH, Essen-Kray; Symposium on Reactivity of carbons, cokes and solid fuels, Atlantic City, Fall 1962, 06(2).

J. M. Smith, H.C. Van Ness, M. M. Abbot, (2014), Introduction to chemical engineering Thermodynamics. 6th edition, United States of America, ISBN 0072402962;

Letellier S. et al., (2010). Gasification of aqueous biomass in supercritical water: a thermodynamic equilibrium analysis. Journal of Supercritic Fluids, 2010; 51(3):353–61. CrossRef

Zainal Z. et al., (2001). Prediction of performance of a downdraft gasifier using equilibrium modeling for different biomass materials. Energy Convers Manage, 2001; 42(12):1499–515. CrossRef

Jarungthammachote S, Dutta A., (2007). Thermodynamic equilibrium model and second law analysis of a downdraft waste gasifier. Energy, 2007; 32(9):1660–9. CrossRef

Alves, S., Figueiredo J. L., (1989). A model for pyrolysis of wet wood. Chemical Engineering Science, 1989; 44(12): 2861–2869. CrossRef

Herrmann, F. (2000). The Karlsruhe Physics Course. European Journal of Physics, 2000, 21, 49–58. CrossRef

Burkhardt, H., (1987). System physics: A uniform approach to the branches of classical Physics. Am. J. Phys., 1987; 55 344–350. CrossRef

Maurer, W., (1998). Elementare Kontinuumsmechanik. 1998, PdN: Physik 47/6 (pp. 31).

Mathworks., (2011). Global Optimization Toolbox: User's Guide (r2011b). Retrieved November 10, 2011 from www.mathworks.com/help/pdf_doc/gads/gads_tb.pdf.

Radzicki, M. J., Taylor, R. A., (2008). Origin of System Dynamics: Jay W. Forrester and the History of System Dynamics. In: U.S. Department of Energy's Introduction to System Dynamics. Retrieved 23 October 2008.

Thoma, J., (1975). Bond graphs: introduction and applications, Elsevier Science, ISBN 0-08-018882-6.

Ortega, J. M., Rheinboldt, W., (2000). Iterative Solution of Nonlinear Equations in Several Variables. Society for Industrial & Applied Mathematics, 2000, Classics in Applied Mathematics, ISBN 0-898-71461-3.

Hazewinkel, M., ed. (2001). Method of conjugate gradients. Encyclopedia of Mathematics, Springer, ISBN 978-1-55608-010-4.

Hans U. Fuchs, (2010), The Dynamics of Heat – A Unified Approach to Thermodynamics and Heat Transfer, 2nd Edition. Springer, New York, 2010. ISBN 978-1-4419-7604-8.

Job, G., (1981a). Chemische Reaktionen physikalisch beschrieben. Konzepte eines zeitgemäßen Physikunterrichts vol. 4, Hannover: Hermann Schroedel Verlag, pp. 14–31.

Falk, G., (1985). Entropy, a resurrection of caloric–a look at the history of Thermodynamics. Eur. J. Phys., 1985, 6 108–115. CrossRef

Gibbs, W. J., (1961). The scientific papers of J. Willard Gibbs vol 1 Thermodynamics. Dover Publications, New York, 1961. ISBN-10: 0918024773.

Callen, H. B., (1960). Thermodynamics: an introduction to the physical theories of equilibrium thermostatics and irreversible thermodynamics. University of Pennsylvania, 1960, ASIN: B0007HZSS0.

Will, K., (2009). Mögliche Vor- und Nachteile des Karlsruher Physikkurses – Eine Diskussionsgrundlage. Der mathematische und naturwissenschaftliche Unterricht. Band 62, Nummer 2, 2009, S. 102–109;

Dunn, I. J., Heinzle, E., Ingham, J. and Přenosil, J. E., (2003). Appendix: Using the Berkeley Madonna Language, in Biological Reaction Engineering: Dynamic Modelling Fundamentals with Simulation Examples, Second Edition, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, FRG. Doi: 10.1002/3527603050.app1;




DOI: http://dx.doi.org/10.1260/1750-9548.9.2.137

Copyright (c) 2016 The International Journal of Multiphysics