Statistical analysis tolerance using jacobian torsor model based on uncertainty propagation method

Authors

  • W Ghie

DOI:

https://doi.org/10.1260/175095409787924472

Abstract

One risk inherent in the use of assembly components is that the behaviour of these components is discovered only at the moment an assembly is being carried out. The objective of our work is to enable designers to use known component tolerances as parameters in models that can be used to predict properties at the assembly level. In this paper we present a statistical approach to assemblability evaluation, based on tolerance and clearance propagations. This new statistical analysis method for tolerance is based on the Jacobian-Torsor model and the uncertainty measurement approach. We show how this can be accomplished by modeling the distribution of manufactured dimensions through applying a probability density function. By presenting an example we show how statistical tolerance analysis should be used in the Jacobian-Torsor model. This work is supported by previous efforts aimed at developing a new generation of computational tools for tolerance analysis and synthesis, using the Jacobian-Torsor approach. This approach is illustrated on a simple threepart assembly, demonstrating the method’s capability in handling threedimensional geometry.

References

ø Bjørke, “Computer-Aided Tolerancing”, 2nd edition New York: ASME Press; 1989.

K. W Chase, Gao J., S. P. Magleby, “Generalized 2-D Tolerance Analysis of Mechanical Assemblies with Small Kinematic Adjustments”, Journal of Design and Manufacturing, Vol. 5, 1995, No. 2.

K. W Chase, J. Gao, S. P. Magleby. “General 3-D Tolerance Analysis of Mechanical Assemblies with Small Kinematics Adjustments”, IIE Transactions, 1998, Vol. 30, pp. 367-377. https://doi.org/10.1080/07408179808966476

JM Linares, C. Marty, “Tolerancement par groupes fonctionnels”, 3eme Seminaire international CIRP sur le tolerancement geometrique. ENS Cachan, 27-28 avril 1993.

A. Ballu, L. Mathieu, “Choice of functional specifications using graphs within the framework of education”, CIRP computer aided tolerancing 6th seminar. 1998. p. 197-206. https://doi.org/10.1007/978-94-017-1705-2_20

D. Tessendier, Y. Couetard, “Gerard A. Three-dimensional functional tolerancing with proportional assembly clearance volume (UPEL): application to setup planning”, Proceedings of 5 CIRP seminar on computer aided tolerancing. April 27-29. p. 113-123. https://doi.org/10.1007/978-1-4615-5797-5_13

S. Samper, M. Giordano, “Models for tolerancing process by considering mechanism flexibility”, Integrated design and manufacturing in mechanical engineering. Kluwer Academic Publishers; 1996. p. 349-356. https://doi.org/10.1007/978-94-011-5588-5_35

B. Marguet, L. Mathieu “Method for geometric variation management from key characteristics to specifications”, CIRP seminar on computer aided tolerancing. 2001.

N Wang, TM Ozsay, “Automatic generation of tolerance chains from mating relations represented in assembly model”, Journal of Mechanical Design 1993; 1115: 751-757. https://doi.org/10.1115/1.2919265

B. Anselmetti “Generation of functional tolerancing based on positioning features”, Computer-Aided Design 38 (2006) 902-919. https://doi.org/10.1016/j.cad.2006.05.005

A. Desrochers, “Modeling three dimensional tolerance zones using screw parameters”, CD-ROM Proceedings of ASME 25th Design Automation Conference, 1999, Las Vegas.

P. Bourdet, A. Clément, “Study of optimal-criteria identification based on the small displacement screw model”, Annals of the CIRP, 1988, vol. 37, pp. 503-506. https://doi.org/10.1016/s0007-8506(07)61687-4

C. Zhang, J. Luo and B. Wang, Statistical tolerance synthesis using distribution function zones. International Journal of Production Research 1999; 37: 3995-4006. https://doi.org/10.1080/002075499189880

L. Laperrière, T. Kabore, “Monte-Carlo simulation of tolerance synthesis equations”, International Journal of Production Research, 11(39), 2001, pp. 2395-2406. https://doi.org/10.1080/00207540110039198

W. Ghie, “Modèle unifié Jacobien-Torseur pour le tolérancement assisté par ordinateur”, Ph.D. thesis; Université de Sherbrooke, Canada, 2004.

A. Desrochers, W. Ghie, L. Laperriere, “Application of a unified Jacobian-Torsor model for tolerance analysis”, Journal of Computing and Information Science in Engineering, 1(3), 2003, pp. 2-14. https://doi.org/10.1115/1.1573235

R. Moore “Methods and Applications of Interval Analysis”, Society for Industrial and Applied Mathematic, ISBN 0898711614, 1979. J. R. Taylor, Incertitudes et analyse des erreurs dans les mesures physiques avec exercices corrigés, collection Masson Sciences, Dunod, Paris, 2000.

B. Taylor, and Kuyatt, C., “Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results”, NIST Technical Note 1297, Gaithersburg, MD: National Institute of Standards and Technology, September, 1994. https://doi.org/10.6028/nist.tn.1297-1993

W. W. Hines, D. C. Montgomery, D. M. Goldsman, C. M. Borror, Probabilités et statistique pour ingénieurs(Chenelière éducation, 2005), ISBN 2-7651-0245-7.

Published

2009-03-31

How to Cite

Ghie, W. (2009) “Statistical analysis tolerance using jacobian torsor model based on uncertainty propagation method”, The International Journal of Multiphysics, 3(1), pp. 11-30. doi: 10.1260/175095409787924472.

Issue

Section

Articles