An overview of engineering numerical methods for the dynamic analysis of a nuclear reactor with fluid-structure interaction modelling

Authors

  • J Sigrist

DOI:

https://doi.org/10.1260/175095409787924490

Abstract

The paper is concerned with the dynamic analysis of a nuclear reactor with fluid-structure interaction modelling. Various fluid-structure interaction effects (inertial, elasto-acoustic coupling, confinement) are investigated using specific mathematical modelling. In particular, modelling of the reactor internal structures is performed using an homogenisation method whose numerical basis are exposed in the paper. Influence of fluidstructure coupling on the dynamic behaviour of the reactor is highlighted with a modal analysis, on the one hand, and a dynamic analysis in the 0–20 Hz and 20–200 Hz frequency range, on the other hand. Modal analysis is carried out by computing the mode shapes, frequencies and effective masses of the reactor with and without fluid-structure interaction. Dynamic analysis is performed using various engineering methods (temporal and spectral approaches) which are compared and discussed. From the engineering standpoint, the following questions, of paramount interest in pre-design analysis, are addressed: i) What are the predominant coupling effects in the low frequency range (0–20 Hz)? ii) What are the predominant coupling effects in the high frequency range (20–200 Hz)? iii) What is the influence of the presence of internal structures as far as fluid-structure interaction is concerned? iv) What is the influence of the static pressure loading on the dynamic behaviour of the nuclear reactor?

References

J. Makerle. Fluid-structure interaction problems, finite element approach and boundary elements approaches. A Bibliography. Finite Elements in Analysis and Design, 31, 231-240, 1999. https://doi.org/10.1016/s0168-874x(98)00065-1

J. Makerle. Earthquake analysis of structures: FEM and BEM approaches, a bibliography (1995-1998). Finite Element Analysis Design, 32, 113-124, 1999. https://doi.org/10.1016/s0168-874x(99)00003-7

J. Makerle. Finite element vibration and dynamic response analysis of engineering structures, a bibliography (1994-1998). Shock and Vibration, 7, 39-56, 2000. https://doi.org/10.1155/2000/405046

F. Axisa. Modelling of mechanical systems. Vol 3. Fluid-structure interaction. Elsevier, 2006.

R.J. Gibert. Vibration des structures. Interactions avec les fluides. Sources d'excitation aléatoires. Collection de la Direction des Etudes et Recherches d'Electricité de France, vol. 69, Eyrolles, 1986.

H. J.-P. Morand, R. Ohayon. Fluid-structure interaction. Wiley & Sons, 1995.

J.F. Sigrist, D. Broc, C. Lainé. Dynamic analysis of a nuclear reactor with fluid-structure interaction. Part I: seismic loading, fluid added mass and added stiffness effects. Nuclear Engineering and Design, 236, 2431-2443, 2006. https://doi.org/10.1016/j.nucengdes.2006.03.001

J.F. Sigrist, D. Broc, C. Lainé. Dynamic analysis of a nuclear reactor with fluid-structure interaction. Part II: shock loading, fluid compressibility effects. Nuclear Engineering and Design, 237, 289-299, 2007. https://doi.org/10.1016/j.nucengdes.2006.07.001

R.J. Fritz. The effect of liquids on the dynamic motion of immersed solids. Journal of Engineering for Industry, 94, 167-173, 1972. https://doi.org/10.1115/1.3428107

C. Rajakumar, C. G. Rogers. The Lanczos algorithm applied to unsymmetric generalized eigenvalue problem. International Journal of Numerical Methods in Engineering, 32, 1009-1026, 1991. https://doi.org/10.1002/nme.1620320506

J.F. Sigrist. Modal analysis of fluid-structure interaction problems with pressure-based finite elements for industrial applications. International Journal of Multiphysics, 1, 123-149, 2007. https://doi.org/10.1260/175095407780130553

Link

G.C. Everstine. A symmetric potential formulation for fluid-structure interaction. Journal of Sound and Vibration, 79, 157-190, 1981. https://doi.org/10.1016/0022-460x(81)90335-7

G. Sandberg, P.A., Göransson. Asymmetric finite element formulation for acoustic fluid-structure interaction analysis. Journal of Sound and Vibration, 123, 507-515, 1988. https://doi.org/10.1016/s0022-460x(88)80166-4

F. Axisa, R.J. Gibert. Non-linear analysis of fluid-structure coupled transient problems in piping systems using finite elements. Application to the mechanical effects in sodium-water reaction in the secondary loop of a pool-type LMFBR. Pressure Vessel and Piping, Orlando, 27 June-2 July, 1982.

H. J-P. Morand, R. Ohayon. Substructure variationnal analysis of the vibrations of coupled fluid-structure systems. Finite element results. International Journal for Numerical Methods in Engineering, 14, 741-755, 1979. https://doi.org/10.1002/nme.1620140508

J.F. Sigrist, D. Broc. Homogenisation method for the modal analysis of a nuclear reactor with internal structures modelling and fluid structure-interaction coupling. Nuclear Engineering and Design, 237, 431-440, 2007. https://doi.org/10.1016/j.nucengdes.2006.08.006

A. Bensoussan, J.L. Lions, G. Papanicolaou. Asymptotic analysis for periodic structures. North-Holland, 1978.

E. Sanchez-Palencia. Non-homogenous media and vibration theory. Springer-Verlag, 1980.

C. Conca, J. Planchard, M. Vanninathan. Fluids and periodic structures. Masson, 1995.

J. Planchard. Eigenfrequencies of a tube bundle placed in a confined fluid. Computer Methods in Applied Mechanics and Engineering, 30, 75-93, 1982. https://doi.org/10.1016/0045-7825(82)90055-x

J. Planchard, M. Ibnou-Zahir. Natural frequencies of a tube bundle in an incompressible fluid. Computer Methods in Applied Mechanics and Engineering, 41, 47-68, 1983. https://doi.org/10.1016/0045-7825(83)90052-x

L. Hammami. Etude de l'interaction fluide/structure dans les faisceaux de tubes par une méthode d'homogénéisation. Application à l'analyse sismique des coeurs RNR. Thèse de Doctorat, Univeristé Paris VI, 1991.

D. Brochard, F. Gatenbein, R.J. Gibert. Modelling of the dynamic behaviour of LWR internals. 9th Conference on Structural Mechanic in Reactor Technology, Lausane, 17-21 August, 1987.

K. Cheval. Modélisation du comportement sismique de structures multitubulaires baignées par un fluide dense. Thèse de Doctorat, Université Paris VI, 2001.

D. Broc, J.C. Queval, E. Viallet. Seismic behaviour of PWR reactor cores: fluid-structure effects. 17th Conference on Structural Mechanic in Reactor Technology, Prague, 17-22 August, 2003.

D. Broc. Seismic behaviour of PWR reactor cores: whole core model with fluid-structure interaction effects.Flow Induced Vibrations, Paris, 6-9 July, 2004.

P. Verpeaux, A. Millard, T. Charras, A. Combescure. A modern approach of computer codes for structural analysis. Structural Mechanics in Reactor Technology, Anaheim, 14-18 August, 1989.

E. De Langre. Fluides et solides. Les éditions de l'Ecole Polytechnique, 2001.

R.W. Clough, J. Penzein. Dynamics of structures. MacGraw-Hill, 1986.

C.M. Harris. Shock and vibration handbook. MacGraw-Hill, 1998.

M.A. Dokainish, K. Subbaraj. A Survey of direct time-integration methods in computational structural dynamics-I. Explicit methods. Computer & Structures, 32, 1371-1386, 1989. https://doi.org/10.1016/0045-7949(89)90314-3

K. Subbaraj, M.A. Dokainish. A Survey of direct time-integration methods in computational structural dynamics-II. Implicit methods. Computer & Structures, 32, 1387-1401, 1989. https://doi.org/10.1016/0045-7949(89)90315-5

K.J. Bathe. Finite element procedures in engineering analysis. Prentice-Hall, 1982.

A.K. Gupta, T. Hassan. Time and frequency domain analysis of single degrees of freedom systems. Nuclear Engineering and Design, 167, 1-5, 1996.

J.F. Sigrist, S. Garreau. Dynamic analysis of fluid-structure interaction problems with spectral method using pressure-based finite elements. Finite Element Analysis in Design, 43, 287-300, 2007. https://doi.org/10.1016/j.finel.2006.10.002

Published

2009-03-31

How to Cite

Sigrist, J. (2009) “An overview of engineering numerical methods for the dynamic analysis of a nuclear reactor with fluid-structure interaction modelling”, The International Journal of Multiphysics, 3(1), pp. 31-60. doi: 10.1260/175095409787924490.

Issue

Section

Articles