Adaptive time stepping for explicit euler implementation of spherical and non-spherical particle speed up

Authors

  • G Boiger
  • M Mataln
  • W Brandstätter

DOI:

https://doi.org/10.1260/175095409788922301

Abstract

Numerical implementation schemes of drag force effects on Lagrangian particles can lead to instabilities or inefficiencies if static particle time stepping is used. Despite well known disadvantages, the programming structure of the underlying, C++ based, Lagrangian particle solver led to the choice of an explicit EULER, temporal discretization scheme. To optimize the functionality of the EULER scheme, this paper proposes a method of adaptive time stepping, which adjusts the particle sub time step to the need of the individual particle. A user definable adjustment between numerical stability and calculation efficiency is sought and a simple time stepping rule is presented. Furthermore a method to quantify numerical instability is devised and the importance of the characteristic particle relaxation time as numerical parameter is underlined. All derivations are being conducted for (non-)spherical particles and finally for a generalized drag force implementation. Important differences in spherical and non-spherical particle behaviour are pointed out.

References

M.Mataln, G.Boiger, W.Brandstätter, B.Gschaider, (2008). Simulation of Particle Filtration Processes in Deformable Media, Part 1: Fluid-Structure Interaction, ICE Stroemungsforschung GmbH., Montanuniversitaet Leoben. Int.Journal of Multiphysics, Vol.2,( No.2), July 2008 , pp. 179-189(11); https://doi.org/10.1260/175095408785416983

G.Boiger, M.Mataln, W.Brandstätter, B.Gschaider, (2008). Simulation of Particle Filtration Processes in Deformable Media, Part 2: Large Particle Modelling, ICE Stroemungsforschung GmbH., Montanuniversitaet Leoben. Int.Journal of Multiphysics, Vol.2,(No.2), July 2008 , pp. 191-206(16)8; https://doi.org/10.1260/175095408785416938

M.Mataln, W.Brandstätter, (2004). A Unified Approach to Model Fluid-Structure Interactions. Montanuniversitaet Leoben, Austria. Society of Petroleum Engineering, seminar notes, 2004.

W.Brandstätter, (2005). Flow and Combustion Modelling. Montanuniversitaet Leoben, Austria. Lecture notes February 2005-July 2005.

C.Crowe, M.Sommerfeld, Y.Tsuji, (1998). Multiphase Flows with Droplets and Particles, Boca Raton, FL: CRC Press 1998; ISBN-10: 0849394694/0-8493-9469-4. https://doi.org/10.1080/07373939908917667

R.P. King. Introduction to Particle Fluid Flow, Butterworth-Heinemann; (2002).

S.Lain, D.Bröder, M.Sommerfeld, (1999). Experimental and numerical studies of the hydrodynamics in a bubble column. Chemical Engineering Science, 54, 4913. https://doi.org/10.1016/s0009-2509(99)00212-2

S.Lain, M.F.Göz, (2000). Instabilities in numerical simulations of dispersed two-phase flow. Mechanical Research Communication, 27, 475. https://doi.org/10.1016/s0093-6413(00)00120-8

S.Lain, M.F.Göz, (2001). Numerical instabilities in bubble tracking in two-phase flow. International Journal of Bifurcation and Chaos, 11(4), 1169. https://doi.org/10.1142/s021812740100264x

S. Lain, M.F. Göz, (2004). Study of the numerical instabilities in Lagrangian tracking of bubbles and particles in two-phase flow. Computers and Chemical Engineering 28 (2004) 2727-2733. https://doi.org/10.1016/j.compchemeng.2004.07.035

S.Lain, M.F.Göz, M.Sommerfeld, (2006). Instabilities in LaGrangian Tracking of Bubbles and Particles in Two-Phase Flow numerical. Wiley InterScience, 52: 469-477. https://doi.org/10.1002/aic.10670

A.Haider, O.Levenspiel, (1988). Drag Coefficient and Terminal Velocity of Spherical and Non Spherical Particles. Powder Technology, 58 (1989), 63-70. https://doi.org/10.1016/0032-5910(89)80008-7

A.Hölzer, M.Sommerfeld, (2007). New, simple correlation formula for the drag coefficient of Non - Spherical Particles. Martin-Luther-Universität, Halle-Wittenberg, Germany. Powder Technology, Vol.184(3) (2007), 361-365. https://doi.org/10.1016/j.powtec.2007.08.021

S.V.Apte, K.Mahesh, T.Lundgren, (2003). A Eulerian-Lagrangian model to simulate two-phase/particulate flows, Center for Turbulence Research, Annual Research Briefs, (2003).

W.J.Kowalski, W.P.Bahnfleth, T.S.Whittam, (1999). Filtration of Airborne Microorganisms: Modelling and Prediction. Pennsylvania State University, 1999. ASHRAE Transactions 105(2), 4-17.

http://www.engr.psu.edu/ae/iec/abe/publications. http://www.engr.psu.edu/ae/iec/abe/publications

C.L.Cox, E.W.Jenkins, P.J.Mucha, (2005). Modelling of Debris Deposition in an Extrusion Filter Medium. Clemenson University, Clemenson, SC. Proceedings of the 21st Annual Meeting of the Polymer Processing Society, Leipzig, Germany, June 19-23, 2005.

W. Bohl, W.Elmendorf, (2005). Technische Strömungslehre, Vogel Fachbuch, Kamprath Reihe Aufl.:13.2005. ISBN-10: 3834330299.

http://www.opencfd.co.uk/openfoam/ http://www.opencfd.co.uk/openfoam/

http://www.cfd-online.com/Wiki/CFD-Wiki:Introduction http://www.cfd-online.com/Wiki/CFD-Wiki:Introduction

G.Boiger, M.Mataln, W.Brandstätter, (2009). Simulation of Particle Filtration Processes in Deformable Media, Part 3.1: Basic concepts and particle-fluid force implementation of a non-spherical dirt particle solver, ICE Stroemungsforschung GmbH., Montanuniversitaet Leoben. Article in review since Jan 2009. Int.Journal of Multiphysics; https://doi.org/10.1260/1750-9548.3.4.407

G.Boiger, M.Mataln, W.Brandstätter, (2009). Simulation of Particle Filtration Processes in Deformable Media, Part 3.2: Interaction modelling and solver verification of a non-spherical dirt particle solver, ICE Stroemungsforschung GmbH., Montanuniversitaet Leoben. Article in review since Jan 2009. Int.Journal of Multiphysics; https://doi.org/10.1260/1750-9548.3.4.433

Published

2009-09-30

How to Cite

Boiger, G., Mataln, M. and Brandstätter, W. (2009) “Adaptive time stepping for explicit euler implementation of spherical and non-spherical particle speed up”, The International Journal of Multiphysics, 3(3), pp. 267-292. doi: 10.1260/175095409788922301.

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >>