Numerical investigation of magnetic sensor for DNA hybridization detection using planar transformer

Sayyed M. Azimi, Mohammad R. Bahmanyar, Massoud Zolgharni, Wamadeva Balachandran


This paper introduces a sensor for detection of DNA hybridization and investigates its performance by means of computer simulation. A planar transformer with spiral windings is proposed for hybridization detection. In order to detect the occurrence of hybridization, single strand target DNA’s are tagged with magnetic beads. Target DNA’s are then exposed to known single strand probe DNA’s which are immobilized on the surface of a functionalized layer in the proximity of the sensor. The primary winding of the transformer is driven by an AC current source. The voltage at the secondary winding is used for detection. Once the hybridization is occurred, a layer of magnetic material is formed and the coupling between the windings is varied. These variations are reflected into the detecting output voltage. The magnitude of the output voltage is numerically calculated in terms of geometrical and physical parameters and the parameter values resulting in maximum response are derived. 

Full Text:



R. M. Umek et al., Electronic detection of nucleic acids, a versatile platform for molecular diagnostics, J. Molecular Diagnostics, 2001, vol. 3, 74–84.

T. Tatsuma, Y. Watanabe, N. Oyama, K. Kitakizaki, and M. Haba, Multichannel quartz crystal microbalance, Anal. Chem., 1999, vol. 71 (17), 3632–3636.

F. Patolsky, A. Lichtenstein, I. Willner, Highly sensitive amplified electronic detection of DNA by biocatalyzed precipitation of an insoluble product onto electrodes, Chemistry – A European Journal, 2003, vol. 9, 1137–1145.

E. Souteyrand, J. P. Cloarec, J. R. Martin, C. Wilson, I. Lawrence, S. Mikkelsen, and M. F. Lawrence, Direct detection of the hybridization of synthetic homo-oligomer DNA sequences by field effect, J. Phys. Chem. B, 1997, vol. 101, 2980–2985.

J. Fritz, E. B. Cooper, S. Gaudet, P. K. Sorger, and S. R. Manalis, Electronic detection of DNA by its intrinsic molecular charge, Proc. Nat. Acad. Sci., 2002, vol. 99 (22), 14, 142–6.

L. Moreno-Hagelsieb, P. E. Lobert, R. Pampin, D. Bourgeois, J. Remacle, D. Flandre, Sensitive DNA electrical detection based on interdigitated Al/Al2O3 microelectrodes, Sens. Actuators B, Chem., 2004, vol. 98, 269–274.

P. A. Besse, G. Boero, M. Demirre, V. Pott, and R. Popovic, Detection of a single magnetic microbead using a miniaturized silicon Hall sensor, Appl. Phys. Lett., 2002, vol. 80, 4199–4201.

D. R. Baselt, G. U. Lee, M. Natesan, S. W. Metzger, P. E. Sheehan, and R. J. Colton, A biosensor based on agnetoresistance technology, Biosens. Bioeleectron., 1998, vol. 13 (7-8), 731–739.

J. C. Rife, M. M. Miller, P. E. Sheehan, C. R. Tamanaha, M. Tondra, and L. J. Whitman, Design and performance of GMR sensors for the detection of magnetic microbeads in biosensors, Sens. Actuators A, Phys., 2003, vol. 107 (3), 209–218.

H. Suzuki, C. M. Ho, and N. Kasagi, A chaotic mixer for magnetic bead-based micro cell sorter, J. Microelectromech. Syst., 2004, vol. 13, 779–790.

J. Do, J. W. Choi, and C. H. Ahn, Low-cost magnetic interdigitated array on a plastic wafer, IEEE Trans. Magnetics, 2004, vol. 40, 3009–3011.

W. Simbuerger, H.-D. Wohlmuth, and P. Weger, A monolithic 3.7-W Silicon power amplifier with 59% PAE at 0.9 GHz, in Proc. ISSCC, 1999, 230–231.

E. Frlan, S. Meszaros, M. Cuhaci, and J.Wight, Computer-aided design of square spiral transformers and inductors, in Proc IEEE MTT-S, 1989, 661–664.

M. W. Geen, G. J. Green, R. G. Arnold, J. A. Jenkins, and R. H. Jansen, Miniature multilayer spiral inductors for GaAs MMICs, in Proc. GaAs IC Symp., 1989, 303–306.

J. W. Choi, T. M. Liakopoulos and C. H. Ahn, An on-chip magnetic bead separator using spiral electromagnets with semi-encapsulated permalloy., Biosens. Bioelectron. 2001, 16, 409.


Copyright (c) 2016 The International Journal of Multiphysics