Numerical simulation of an elementary Vortex-Induced-Vibration problem by using fully-coupled fluid solid system computation


  • M Pomarède
  • E Longatte
  • J Sigrist



Numerical simulation of Vortex-Induced-Vibrations (VIV) of a rigid circular elastically-mounted cylinder submitted to a fluid cross-flow has been extensively studied over the past decades, both experimentally and numerically, because of its theoretical and practical interest for understanding Flow-Induced-Vibrations (FIV) problems. In this context, the present article aims to expose a numerical study based on fully-coupled fluid-solid computations compared to previously published work [34], [36]. The computational procedure relies on a partitioned method ensuring the coupling between fluid and structure solvers. The fluid solver involves a moving mesh formulation for simulation of the fluid structure interface motion. Energy exchanges between fluid and solid models are ensured through convenient numerical schemes. The present study is devoted to a low Reynolds number configuration. Cylinder motion magnitude, hydrodynamic forces, oscillation frequency and fluid vortex shedding modes are investigated and the “lock-in” phenomenon is reproduced numerically. These numerical results are proposed for code validation purposes before investigating larger industrial applications such as configurations involving tube arrays under cross-flows [4].


D. Abouri, A. Parry, A. Hamdouni. Fluid-rigid body dynamic interaction in complex industrial flow. Chapter advanced in fluid mechanics: Fluid Structure Interaction II, Wit Press, pages 295-305, 2003.

D. Abouri, A. Parry, A. Hamdouni E. Longatte. A stable fluid-structure interaction algorithm: application to industrial problems. Journal of Pressure Vessel Technology, 128, 516-524, 2006.

F. Archambeau, N. Mechitoua, M. Sakiz. Code_Saturne: a finite volume code for the computation of turbulent incompressible flows - Industrial applications. International Journal of Finite Volumes, [], Volume 1, 2004.

Z. Bendjeddou. Simulation numÇrique de vibrations induite spar Çcoulement dans un faisceau de tubes. Thäse de Doctorat, UniversitÇ de Lille, 2005.

R.D. Blevins. Flow-Induced Vibrations. Van Nostrand Reinhold, 1990.

J. Blom. A monolithical fluid-structure interaction algorithm applied to the piston problem. Computer Methods in Applied Mechanics and Engineering, 167, 369-391, 1998.

P. Causin, J.F. Gerbeau, F. Nobile. Added-mass effet in the design of partitioned algorithms for fluid-structure problems. Computer Methods in Applied Mechanics and Engineering, 194, 4506-4527, 2005.

S.S. Chen. Flow Induced Vibrations of Circular Cylindrical Structures. Hemisphere, 1987.

J. Donea, A. Huerta, J.P. Ponthot, A. Rodriguez-Ferran. Encyclopedia of Computational Mechanics Vol. 1: Fundamentals., Chapter 14: Arbitrary Lagrangian-Eulerian Methods. Wiley & Sons, 2004.

C. Farhat, M. Lesoinne. Improved staggered algorithms for the serial and parallel solution of three-dimensional non-linear transient aeroelastic problems. AIAA Journal, 36, 1774-1757, 1996.

C. Farhat, M. Lesoinne, P. LeTallec. Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity. Computer Methods in Applied Mechanics and Engineering, 157, 95-114, 1998.

C.C. Feng. The measurement of vortex-Induced Effects Past Stationary and Oscillating Circular and D-Section Cylinders. Master Thesis, University of British Columbia, 1968.

R. Govardhan, C.H.K. Williamson. Modes of Vortex Formation and Frequency Response of a Freely Vibrating Cylinder. Journal of Fluid Mechanics, 420, 85-130, 2000.

M.S. Guerouache. Etude numÇrique de l'instabilitÇ de Bernard-Karman derriäre un cylindre fixe ou en mouvement pÇriodique. Dynamique de l'Çcoulement en advection chaotique. Thäse de Doctorat, Ecole Polytechnique de l'UniversitÇ de Nantes, 2000.

E. Guilmineau, P. Queutey. Numerical Simulation of Vortex-Induced Vibration of a circular Cylinder with Low Mass-Damping in a Turbulent Flow. Journal of Fluids and Structures, 19, 449-466, 2004.

G.M. Hermann, J. Steindorf. Efficient partitioned procedures for computation of fluid-structure interaction on parallel computers. Developments in Computational Mechanics with High Performance Computing. B.H.V., Civil-Comp Press, Edinburgh, S. pages 127-136, 1999.

B. HÅbner, E. Walhorn, D. Dinkler. A monolithic approach to fluid-structure interaction using space-time finite elements. Computer methods in applied mechanics and engineering, 193, 2087-2104, 2004.

F. Huvelin. Couplage de codes en interaction fluide-structure et application aux instabilitÇs fluideÇlastiques. Thäse de Doctorat, Ecole des Sciences Pour l'IngÇnieur de Lille, 2008

F. Huvelin, E. Longatte, V. Verreman. Numerical simulation of a dynamic instability for a pipe conveying fluid. Pressure Vessel and Piping, Vancouver, 25-28 July, 2006.

Y. Jus. Validation du code de calcul CFX pour une application de calcul couplÇ fluide/structure. Thäse de Master, UniversitÇ de Bordeaux, 2007.

A. Khalak, C.H.K. Williamson. Motions, Forces and Mode Transitions in Vortex-Induced Vibrations at Low Mass Damping. Journal of Fluids and Structures, 13, 813-851, 1999.

M. Lesoinne, C. Farhat. A geometric conservation for flow problems with moving boundaries and deformable meshes, and their impact on aeroelastic computations. Computer Methods in Applied Mechanics and Engineering, 134, 71-90, 1996.

E. Longatte, Z. Bendjeddou, M. Souli. Methods for numerical study of tube bundle vibrations in cross-flows. Journal of Fluids and Structures, 18, 513-528, 2003.

E.Longatte, Z. Bendjeddou, M. Souli. Application of Arbitrary Lagrange Euler Formulations to Flow-Induced Vibration Problems. Journal of Pressure Vessel Technology 125, 411-417, 2003.

E.Longatte, V. Verreman, M. Souli. Time matching for simulation of fluid-structure interaction problems. Journal of Fluid and Structures, 2008 (in press).

N. Maman, C. Farhat. Matching fluid and structure meshes for aeroelastic computations: a parallel approach. Computers & Structures, 54, 779-785, 1995.

J.R. Meneghini, F. Saltara, R. de Andrare Fregonesi, C. Takeshi Yamamoto, E. Casaprima, J.A. Jr. Ferrari. Numerical simulations of VIV on long flexible cylinders immersed in complex flow fields. European Journal of Mechanics B/Fluids, 23, 51-63, 2004.

D. Newman, G.E. Karniadakis. Simulations of flow over a flexible cable: a comparison of forced and flow-induced vibration. Journal of Fluids and Structures, 10, 439-453, 1996.

D. Newman, G.E. Karniadakis. A direct numerical simulation of flow past a freely vibrating cable. Journal of Fluid Mechanics, 344, 95-136, 1997.

M.R.H. Nobari, H. Naderan. A numerical study of flow past a cylinder with cross flow and inline oscillation. Computers & Fluids, 35, 393-415, 2006.

C. Norberg. Flow around a circular cylinder : aspect of fluctuating lift. Journal of Fluids and Structures, 15, 459-469, 2001.

Z.Y. Pan, W.C. Cui, Q. M. Miao. Numerical Simulation of Vortex-Induced Vibration of a Circular Cylinder at Low mass-Damping Using RANS Code. Journal of Fluids and Structures, 23, 23-37, 2007.

S. Piperno, C. Farhat. Partitionned procedures for the transient solution of coupled aeroelastic problems. Computer Methods in Applied Mechanical and Engineering, 190, 3147-3170, 2001.

A. Placzek, J.F. Sigrist, A. Hamdouni. Numerical simulation of an oscillating cylinder in a cross-flow at low reynolds number : forced and free oscillations. Computers & Fluid, 2008 (in press).

T. Sarpkaya. Vortex-induced oscillations: a selective review. Journal of Applied Mechanics, 46, 421-258, 1979.

D. Shiels, A. Leonard, A. Roshko. Flow-induced vibration of a circular cylinder at limiting structural parameters. Journal of Fluid and Structures, 15, 3-21, 2001.

J.F. Sigrist. Introduction aux mÇthodes numÇriques de rÇsolution de problämes couples fluide/structure. 2. Vibrations et Çcoulements. Ecole Centrale de Nantes, 2007.

S. P. Singh, S. Mittal. Vortex-induced vibration at low reynolds numbers: hysteresis and vortex-shedding modes. Journal of Fluids and Structures, 20, 1085-1104, 2005.

M. Souli, A. Ouahsine, L. Lewin. ALE formulation for fluid-structure interaction problems. Journal of Computational Methods in Applied Mechanics and Engineering, 190, 659-675, 1999.

M. Souli, J.P. Zolesio. Arbitrary Langrangian-Eulerian and free surface methods in fluid mechanics. Journal of Computational Methods in Applied Mechanics and Engineering, 191, 451-466, 2001.

C.H.K. Williamson, A. Roshko. Vortex formation in the wake of an oscillating cylinder. Journal of Fluids and Structures, 2, 355-381, 1988.



How to Cite

Pomarède, M., Longatte, E. and Sigrist, J. (2010) “Numerical simulation of an elementary Vortex-Induced-Vibration problem by using fully-coupled fluid solid system computation”, The International Journal of Multiphysics, 4(3), pp. 273-291. doi: 10.1260/1750-9548.4.3.273.