A general method for the determination of the entrainment in fluidized beds

J Fuchs, JC Schmid, F Benedikt, AM Mauerhofer, S Müller, H Hofbauer

Abstract


The measurement of the entrainment is complicated in a hot fluidized bed. Therefore, the entrainment or cycle rate of the total bed material inventory is typically estimated via mass and energy balance for e.g. the sorption enhanced reforming process. The sorption enhanced reforming process is an advancement of the conventional dual fluidized bed steam gasification process. It aims for the production of a hydrogen-rich product gas. The process is highly depends on bed material cycle rate, respectively bed material entrainment. Only limited knowledge about simple modelling methods of the entrainment of a fluidized bed are available to validate the cycle rate calculated by mass and energy balances. Therefore, measurements of the bed material entrainment at two different plants were conducted and a model based on easily accessible parameters for the entrainment of fluidized bed risers is presented. It is also verified, that the results from mass and energy balances fit well with the measured data for the entrainment.


Full Text:

PDF

References


Bhusarapu S, Fongarland P, Al-Dahhan MH, Duduković MP. Measurement of overall solids mass flux in a gas–solid Circulating Fluidized Bed. Powder Technol [Internet]. 2004 Nov 11 [cited 2018 Oct 28];148(2–3):158–71. Crossref

Matsuda S. Measurement of solid circulation rate in a circulating fluidized bed. Powder Technol [Internet]. 2008 Oct 28 [cited 2018 Oct 28];187(2):200–4. Crossref

Ludlow JC, Monazam ER, Shadle LJ. Improvement of continuous solid circulation rate measurement in a cold flow circulating fluidized bed. Powder Technol [Internet]. 2008 Mar 10 [cited 2018 Oct 28];182(3):379–87. Crossref

Medrano JA, Nordio M, Manzolini G, van Sint Annaland M, Gallucci F. On the measurement of solids circulation rates in interconnected fluidized beds: Comparison of different experimental techniques. Powder Technol [Internet]. 2016 Nov 1 [cited 2018 Oct 28];302:81–9. Crossref

Lunzer A. CPFD simulation in Barracuda VR of a novel dual fluid bed cold flow model. TU Wien, Master Thesis; 2018.

Kraft S. Investigation of particle mixing in dual fluidized bed gasification systems by means of cold flow modelling and computational methods. TU Wien, PhD Thesis; 2017.

Benedikt F, Schmid JC, Fuchs J, Mauerhofer AM, Müller S, Hofbauer H. Fuel flexible gasification with an advanced 100 kW dual fluidized bed steam gasification pilot plant. Energy [Internet]. 2018;164:329–43. Crossref

Mauerhofer AM, Benedikt F, Schmid JC, Fuchs J, Müller S, Hofbauer H. Influence of Different Bed Material Mixtures on Dual Fluidized Bed Steam Gasification. Energy [Internet]. 2018;157. Crossref

Benedikt F, Fuchs J, Schmid JC, Müller S, Hofbauer H. Advanced dual fluidized bed steam gasification of wood and lignite with calcite as bed material. Korean J Chem Eng. 2017;34(7):1–11. Crossref

Kuba M, Kirnbauer F, Hofbauer H. Influence of coated olivine on the conversion of intermediate products from decomposition of biomass tars during gasification. Biomass Convers Biorefinery [Internet]. 2016; Crossref

Kuba M, Havlik F, Kirnbauer F, Hofbauer H. Influence of bed material coatings on the water-gas-shift reaction and steam reforming of toluene as tar model compound of biomass gasification. Biomass and Bioenergy [Internet]. 2015;1–10. Crossref

Koppatz S, Pfeifer C, Hofbauer H. Comparison of the performance behaviour of silica sand and olivine in a dual fluidised bed reactor system for steam gasification of biomass at pilot plant scale. Chem Eng J [Internet]. 2011;175(1):468–83. Crossref

Fuchs J, Schmid JC, Benedikt F, Müller S, Hofbauer H, Stocker H, et al. The impact of bed material cycle rate on in-situ CO2 removal for sorption enhanced reforming of different fuel types. Energy [Internet]. 2018;162:35–44. Crossref

Pröll T, Hofbauer H. Development and Application of a Simulation Tool for Biomass Gasification Based Processes. Int J Chem React Eng. 2008;6:Article A89. Crossref

Schmid JC, Fuchs J, Benedikt F, Mauerhofer AM, Müller S, Hofbauer H, et al. Sorption Enhanced Reforming with the Novel Dual Fluidized Bed Test Plant at TU Wien. In: European Biomass Conference and Exhibition (EUBCE). Stockholm; 2017. p. 421–8.

Kunii D, Levenspiel O. Fluidization engineering, 2nd edition. Stoneham, MA (United States); Butterworth Publishers; 1991.

Grace J, Knowlton T, Avidan A. Circulating Fluidized Beds. 1997.

Stollhof M, Penthor S, Mayer K, Hofbauer H. Estimation of the solid circulation rate in circulating fl uidized bed systems. Powder Technol [Internet]. 2018;336:1–11. Crossref

Fuchs J. Ermittlung des Betriebskennfeldes einer innovativen Zweibettwirbelschicht anhand von Kaltmodelluntersuchungen. MU Leoben, Master Thesis; 2013.

Martinovic D. Kaltmodellversuche und MSR-Konzept einer Zweibett-Wirbelschicht-Vergasungsanlage. TU Wien, Master Thesis; 2013.

Bickel AA. Untersuchungen zu den Scalingkriterien an einer Zweibett-Wirbelschicht-Vergasungsanlage. TU Wien, Master Thesis; 2018.

Glicksman LR, Hyre MR, Farrell PA. Dynamic similarity in fluidization. Int J Multiph Flow [Internet]. 1994 Aug 1 [cited 2018 Oct 21];20:331–86. Crossref

Glicksman LR, Hyre M, Woloshun K. Simplified scaling relationships for fluidized beds. Powder Technol [Internet]. 1993 Nov 1 [cited 2018 Oct 21];77(2):177–99. Crossref

Reh L. Das Wirbeln von körnigem Gut in schlanken Diffusoren als Grenzzustand zwischen Wirbelschicht und pneumatischer Förderung. TH Karlsruhe, PhD Thesis; 1961.

Bi HT, Grace JR. Flow regime diagrams for gas-solid fluidization and upward transport. Int J Multiph Flow [Internet]. 1995 Nov 1 [cited 2018 Oct 21];21(6):1229–36. Crossref




DOI: http://dx.doi.org/10.21152/1750-9548.12.4.359

Copyright (c) 2018 J Fuchs, JC Schmid, F Benedikt, AM Mauerhofer, S Müller, H Hofbauer

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.