Coupled Gas Flow, Diffusion and Reaction in a ppb-level SnO2-NiO Formaldehyde Sensor System
DOI:
https://doi.org/10.1260/1750-9548.5.2.101Abstract
The present project is part of an effort towards the development of a ppb-level formaldehyde sensor system for indoor air quality. An electroceramic response model for a SnO2-NiO composite solid oxide sensing material of n-type conductivity inside the porous material is coupled with a transient flow field simulation of the delivery of a formaldehyde pulse to the sensor surface. Coupled volumetric CFD domains are used to examine the effects of the transport of formaldehyde from a preconcentrator unit to the sensor, and its implications for interpreting the sensor signals from laboratory experiments.References
Residential Indoor Air Quality Guideline: Formaldehyde. April 15, 2006. Health Canada Publication: 4120, Cat.: H128-1/06-432-1E, ISBN: 0-662-42661-4.
M. Possanzini and V. Di Palo, Determination of formaldehyde and acetaldehyde in air by HPLC with fluorescence detection, Chromatographia, 46 [5-6] (1997) 235-240. https://doi.org/10.1007/bf02496312
E. Grosjean, P.G. Green and D. Grosjean, Liquid Chromatography Analysis of Carbonyl (2,4-Dinitrophenyl)hydrazones with Detection by Diode Array Ultraviolet Spectroscopy and by Atmospheric Pressure Negative Chemical Ionization Mass Spectrometry, Anal. Chem., 71 [9] (1999) 1851-1861. https://doi.org/10.1021/ac981022v
K. Kawamura, K. Kermana, M. Fujihara, N. Nagatani, T. Hashiba and E. Tamiya, Development of a novel hand-held formaldehyde gas sensor for the rapid detection of sick building syndrome, Sens. Actuators B: Chem., 105, [2] (2005) 495-501. https://doi.org/10.1016/j.snb.2004.07.010
G. Eranna, B.C. Joshi, D.P. Runthala and R.P. Gupta, Oxide materials for development of integrated gas sensors - a comprehensive review, Critical Reviews in Solid State and Materials Science, 29 [3] (2004) 111-188. https://doi.org/10.1080/10408430490888977
N. Yamazoe, Towards Innovations of Gas Sensor Technology, Sens. Actuators B: Chem., 108 [1-2] (2005) 2-14.
P. Lv, Z.A. Tang, J. Yu, F.T. Zhang, G.F Wei, Z. Huang and Y. Hu, Study on a micro-gas sensor with SnO2-NiO sensitive film for indoor formaldehyde detection, Sens. Actuators B: Chem., 132 [1] (2008) 74-80. https://doi.org/10.1016/j.snb.2008.01.018
Y.H. Wang, C.Y. Lee, C.H. Lin and L.M. Fu, Enhanced sensing characteristics in MEMS-based formaldehyde gas sensors, Microsyst. Technol., 14 [7] (2008) 995-1000. https://doi.org/10.1007/s00542-007-0460-8
J.A. Dirksen, K. Duval and T.A. Ring, NiO thin-film formaldehyde gas sensor, Sens. Actuators B: Chem., 80 [2] (2001) 106-115. https://doi.org/10.1016/s0925-4005(01)00898-x
C.Y. Lee, CM. Chiang, Y.H. Wang and R.H. Ma, A self-heating gas sensor with integrated NiO thin-film for formaldehyde detection, Sens. Actuators B: Chem., 122 [2] (2007) 503-510. https://doi.org/10.1016/j.snb.2006.06.018
J. Jagiello and W. Betz, Characterization of pore structure of carbon molecular sieves using DFT analysis of Ar and H2 adsorption data, Microporous and Mesoporous Materials, 108 [1-3] (2008) 117-122. https://doi.org/10.1016/j.micromeso.2007.03.035
J. Brown and B. Shirley, A Tool for Selecting an Adsorbent for Thermal Desorption Applications, Supelco Technical Report T402025, Supelco Inc., Bellefonte, PA, (2001).
P. Forchheimer, Wasserbewegung durch Boden, Z. Ver. Deutsch. Ing., 45 (1901) 1782-1788.
J.L. Dunford, J.J. Tunney and X. Du, SnO2/NiO Composite Thin Films for Formaldehyde Detection, in Proc. 9th Ann. IEEE Conf. Sensors, Waikoloa, HI, USA, Nov. 1-4, 2010, 4 pp.
G. Sakai, N. Matsunaga, K. Shimanoe, N. Yamazoe, Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor, Sens. Actuators B: Chem., 80 [2] (2001) 125-131. https://doi.org/10.1016/s0925-4005(01)00890-5
K. Darcovich, F.F. Garcia, C.A. Jeffrey, J.J. Tunney and M.L. Post, Coupled microstructural and transport effects in n-type sensor response modeling for thin layers, Sens. Actuators A : Phys., 147 [2] (2008) 378-386. https://doi.org/10.1016/j.sna.2008.06.007
H. Windischmann and P. Mark, A model for the operation of a thin-film SnOx conductance-modulation carbon monoxide sensor, J. Electrochem. Soc., 126 [4] (1979) 627-633. https://doi.org/10.1149/1.2129098
B. Alfeeli, D. Cho, M. Ashraf-Khorassani, L.T. Taylor and M. Agaha, MEMS-based multi-inlet/outlet preconcentrator coated by inkjet printing of polymer adsorbents, Sens. Actuators B: Chem., 133 [1] (2008) 24-32. https://doi.org/10.1016/j.snb.2008.01.063
R. Inglés, J. Pallarés, J. L. Ramirez and E. Llobet, Fluid Flow Simulation of Preconcentration Membranes Using Finite Elements Tools, in Proc. European Comsol Conference 2009, Milan, Oct. 14-16, 2009, 4 pp.
K. Yang and J. Wu, Numerical study of in situ preconcentration for rapid and sensitive nanoparticle detection, Biomicrofluidics, 4 [3] (2010) 034106-1-034106-15. https://doi.org/10.1063/1.3467446
R.P. Manginell, S. Radhakrishnan, M. Shariati, A.L. Robinson, J.A. Ellison and R.J. Simonson, Two-Dimensional Modeling and Simulation of Mass Transport in Microfabricated Preconcentrators, IEEE Sensors J., 7 [7] (2007) 1032-1041. https://doi.org/10.1109/jsen.2007.896572
Published
How to Cite
Issue
Section
Copyright (c) 2011 K Darcovich, J Tunney, J Dunford, L Styles, G Xiao, A Constant

This work is licensed under a Creative Commons Attribution 4.0 International License.