Interlaminar stress analysis for carbon/epoxy composite space rotors


  • C Lian
  • R Varatharajoo
  • N Suhadis



This paper extends the previous works that appears in the International Journal of Multiphysics, Varatharajoo, Salit and Goh (2010). An approach incorporating cohesive zone modelling technique is incorporated into an optimized flywheel to properly simulate the stresses at the layer interfaces. Investigation on several fiber stacking sequences are also conducted to demonstrate the effect of fiber orientations on the overall rotor stress as well as the interface stress behaviour. The results demonstrated that the rotor interlaminar stresses are within the rotor materials' ultimate strength and that the fiber direction with a combination of 45°/-45°/0° offers the best triple layer rotor among the few combinations selected for this analysis. It was shown that the present approach can facilitate also further investigation on the interface stress behaviour of rotating rotors.


Baker, A. A. and Jones, R. (1988). Bonded Repair of Aircraft Structures. Dordrecht: Martinus Nijhoff Publishers.

Chue, C. H. and Liu, T. J. C. (1995). The Effects of Laminated Composite Patch with Different Stacking Sequences on Bonded Repair. Composite Engineering. 5:223-30.

Edward, K. T., Wilson, R. S. and McLean, S. K. (1989) Flexure of Simply Curved Composite Shapes, Composites 20,527-536 cited in Bhaskar, K. & Varadan, T. K. (1993).

Ibrahim M. M., Varatharajoo, R., Harun, H., Filipski Abdullah, N. (2005). Architecture for Combined Energy and Attitude Control System, American Journal of Applied Sciences- Sci. Publications, Vol. 2, pp. 430-435.

Kirk, J. A., Schmidt, J. R., Sullivan, G. E., & Hromada, L. P. (1997). An Open Core Rotor Design Methodology, Aerospace and Electronics Conference, NAECON, Dayton, USA. pp. 594-600, 1997.

Pagano, N. J. and Pipes, R. B. (1973). Some Observations of the Interlaminar Strength of Composite Laminates, International Journal of Mechanical Science, Pergamon Press. 1973. Vol. 15, pp. 679-688.

Roithmayr, C. M., Karlgaard, C. D., Kumar, R. R., Bose, D. M. (2003). Integrated power and attitude control for a spacecraft with flywheels and control moment gyroscopes, in: Proceedings of 13th AAS/AIAA Space Flight Mechanics Meeting, No. AAS 03-124. American Astronautical Society, Springfield, VA, USA, pp. 1-20.

Tsiotras, P., Shen, H., Hall, C. (2001). Satellite attitude control and power tracking with energy/momentum wheels. Journal of Guidance, Control, and Dynamics 24 (1), 23-34.

Tahani, M., Nosier, A. & Zebarjad, S. M. (2005) Deformation and stress analysis of circumferentially fiber- reinforced composite disks. International Journal of Solids and Structures, Vol. 42, pp. 2741-2754.

Varatharajoo, R. (2006). Onboard Errors of the Combined Energy and Attitude Control System, Acta Astronautica - Pergamon/Elsevier, Vol. 58, pp. 561-563.

Varatharajoo, R. (2006). Operation for the Combined Energy and Attitude Control System, J. Aircraft Engineering and Aerospace Technology- Emerald, Vol. 78, pp. 495-501.

Varatharajoo, R. and Fasoulas S. (2002). Methodology for the Development of Combined Energy and Attitude Control Systems for Satellites, J. Aerospace Science & Technology - Elsevier, Vol. 6, pp. 303-311.

Varatharajoo, R. and Fasoulas S. (2005). The Combined Energy and Attitude Control System for Small Satellites -Earth Observation Missions, Acta Astronautica - Pergamon/Elsevier, Vol. 56, pp. 251-259.

Varatharajoo, R. and Kahle, R. (2005) A Review of Conventional and Synergistic Systems for Small Satellites. Aircraft Engineering and Aerospace Technology. Vol. 77 (2005). pp. 131-141, 2005.

Varatharajoo, R. and Kahle R. (2005). A Review of Spacecraft Conventional and Synergistic Systems, Vol. 77, pp. 131-141, J. Aircraft Engineering and Aerospace Technology- Emerald.

Varatharajoo, R. (2004). A Combined Energy and Attitude Control System for Small Satellites, Acta Astronautica - Pergamon/Elsevier, Vol. 54, pp. 701-712, 2004.

Varatharajoo, R. and Filipski Abdullah, F. (2004). Attitude Performance of the Spacecraft Combined Energy and Attitude Control System, J. British Interplanetary Society - BIS, Vol. 57, pp. 237-241.

Varatharajoo, R., Salit, S. S., Goh, K. H. (2010). Material Optimization of Carbon/ Epoxy Composite Rotor for Spacecraft Energy Storage. International Journal of Multiphysics. Vol. 4 (2) 2010.

Varatharajoo, R. and Tarmizi M. A. (2004). Flywheel Energy Storage for Spacecraft, J. Aircraft Engineering and Aerospace Engineering Technology- Emerald, Vol. 76, pp. 384-390.

Varatharajoo, R., Wooi C. T., Mailah M. (2011). Two Degree-of-freedom Spacecraft Attitude Controller, Advances In Space Research, Vol. 47 (4), pp. 685-689.

Wilkins, D. J. (1983). A preliminary damage tolerance methodology for composite structures. Failure Analysis and Mechanisms of Failure of Fibrous Composite Structures. NASA CP-2278.

Xu, X. P., Needleman, A. (1994). Numerical simulations of fast crack growth in brittlesolids. Journal Mechanics and Physics of Solids, Vol. 42 (9), pp. 1397-1434.



How to Cite

Lian, C., Varatharajoo, R. and Suhadis, N. (2011) “Interlaminar stress analysis for carbon/epoxy composite space rotors”, The International Journal of Multiphysics, 5(4), pp. 353-376. doi: 10.1260/1750-9548.5.4.353.