Accurate solution of the eigenvalue problem for some systems of ODE for calculating holes states in polynomial quantum wells

Authors

  • A Polupanov
  • S Evdochenko

DOI:

https://doi.org/10.1260/1750-9548.7.3.219

Abstract

We demonstrate an explicit numerical method for accurate solving the eigenvalue problem for some systems of ordinary differential equations, in particular, those describing electron and hole bound states in semiconductor quantum wells with polynomial potential profiles. Holes states are described by the Luttinger Hamiltonian matrix. For solving the eigenvalue problem we use the recurrent sequences procedure that makes possible to derive exact analytical expression for the eigenfunctions,. Hole bound states energies and corresponding wave functions are calculated in a finite parabolic quantum well as functions of the lateral quasimomentum component and parameters of the potential.

References

Ando Y., Itoh, T. Calculation of transmission tunneling current across the arbitrary potentials. J. Appl. Phys., 1987, Vol. 61, 1497-1501.

Lui W. W., Fukuma M., J. Appl. Phys., 1986, Vol. 60, 1555-1559.

Bastard G., Mendez E. E., Chang L., Esaki L. Variational calculation on aquantum well in an electric field. Phys. Rev., 1983, Vol. B28, 3241-3244.

Ahn D., Chuang S. L., Chang Y.-C. Valence-band mixing effects on the gain and the refractive index change of quantum-well lasers, J. Appl. Phys., 1988, Vol. 64, 4056-4063. https://doi.org/10.1063/1.341339

Harrison P. Quantum Wells, Wires and Dots. Theoretical and Computational Physics. 2011. J. Wiley & Sons.

Ikonič; Z., Milanovič; V. Hole-bound-state calculation for semiconductor quantum wells, Phys. Rev., 1992, Vol. B45, 8760-8762. https://doi.org/10.1103/physrevb.45.8760

Polupanov A. F., Energy spectrum and wave functions of an electron in a surface energy well in a semiconductor, Sov. Phys. Semicond., 1985, Vol. 19, 1013-1015.

Galiev V. I., Polupanov A. F., Shparlinski I. E., On the construction of solutions of systems of linear ordinary differential equations in the neighbourhood of a regular singularity, J. of Computational and Applied Mathematics, 1992, Vol. 39, 151-163. https://doi.org/10.1016/0377-0427(92)90126-i

Luttinger J. M., Quantum theory of cyclotron resonance in semiconductors: General theory, Phys. Rev., 1956, Vol. 102, 1030-1041. https://doi.org/10.1103/physrev.102.1030

Broido D. A., Sham L. J., Effective masses of holes at GaAs-AlGaAs heterojunctions, Phys. Rev. B, 1985, Vol. 31, 888-892. https://doi.org/10.1103/physrevb.31.888

Galiev V. I., Polupanov A. F., Accurate solutions of coupled radial Schrödinger equations, J. Phys. A: Math. Gen., 1999, Vol. 32, 5477-5492. https://doi.org/10.1088/0305-4470/32/29/308

Polupanov A. F., Galiev V. I., Kruglov A. N. The over-barrier resonant states and multi-channel scattering by a quantum well. Int. J. of Multiphysics, 2008, Vol. 2, 171-177. https://doi.org/10.1260/175095408785416947

Published

2013-09-30

How to Cite

Polupanov, A. and Evdochenko, S. (2013) “Accurate solution of the eigenvalue problem for some systems of ODE for calculating holes states in polynomial quantum wells”, The International Journal of Multiphysics, 7(3), pp. 219-226. doi: 10.1260/1750-9548.7.3.219.

Issue

Section

Articles