Optimal design of a long and slender compressive strut

Authors

  • J Byström

DOI:

https://doi.org/10.1260/175095409788922275

Abstract

This article deals with the optimal design of long and slender compressive struts. The main objective is to minimize the mass of the struts under certain non-failure constraints and thus find the optimal material. We show that the main failure mode of the struts is Euler buckling. The results clearly show that the struts should be constructed from unidirectional carbon fiber composites. A Monte-Carlo model for random microstructure homogenization of unidirectional composites is developed. We finish by performing a numerical computation of the effective properties of the chosen carbon fiber/epoxy composite using COMSOL MULTIPHYSICS software.

References

M.F. Ashby. Materials selection in mechanical design. 3rd edition, Butterworth Heinemann, Oxford, 1999.

S. Abrate. Impact on composite structures. Cambridge university press, 1998.

S. Abrate. Modeling of impact on composite structures. Composite structures, 2001, 51, 129-138. https://doi.org/10.1016/s0263-8223(00)00138-0

R. Olsson. Mass criterion for wave controlled impact response of composite plates. Compos. Part A - App., 2000, 31, 879-887. https://doi.org/10.1016/s1359-835x(00)00020-8

W.D. Stronge. Impact mechanics. Cambridge university press, 2000.

J. F. Knott. Fundamentals of fracture mechanics. Butterworth & Co, London, 1973.

W.C. Young and R. G. Budynas. Roark's formulas for stress and strain. 7th edition, McGraw-Hill, New York, 2002, p. 534.

N. Jones. Structural impact. University press, Cambridge, 1997, p.399.

N. Bakhvalov and G. Panasenko. Homogenization: Averaging Processes in Periodic Media. Kluwer Academic Publishers, Dordrecht, 1989.

A. Bensoussan, J.L. Lions and G.C. Papanicolaou. Asymptotic Analysis for Periodic Structures. North Holland, Amsterdam, 1978.

D. Cioranescu and P. Donato. An Introduction to Homogenization. Oxford Lecture Series in Mathematics and its Applications 17, Oxford, 1999.

V.V. Jikov, S.M. Kozlov and O.A. Oleinik. Homogenization of Differential Operators and Integral Functionals. Springer-Verlag, Berlin, 1994. https://doi.org/10.1007/978-3-642-84659-5

L.-E. Persson, L. Persson, N. Svanstedt and J. Wyller. The Homogenization Method: An Introduction. Studentlitteratur, Lund, 1993.

E. Sanchez-Palencia. Non Homogeneous Media and Vibration Theory. Lecture Notes in Physics 127, Springer-Verlag, Berlin, 1980.

L. Tartar. Cours Peccot au Collége de France. Manuscript, (unpublished), 1977.

N. Bylund, J. Byström and L.-E. Persson. Reiterated homogenization with applications to autopart construction. In: D. Hui (ed), Proceedings of ICCE/8, Tenerife, Spain, 2001, B31-B34.

J. Byström, N. Jekabsons and J. Varna. An evaluation of different models for prediction of elastic properties of woven composites. Compos. Part B - Eng., 2000, 31(1), 7-20. https://doi.org/10.1016/s1359-8368(99)00061-x

D. Lukkassen, L.-E. Persson and P. Wall. Some engineering and mathematical aspects on the homogenization method. Composites Engineering, 1995, 5(5), 519-531. https://doi.org/10.1016/0961-9526(95)00025-i

A. Meidell and P. Wall. Homogenization and design of structures with optimal macroscopic behaviour. In: S. Hernández, C. A. Breddia (eds), Computer Aided Optimum Design of Structures V, Computational Mechanics Publications, Southampton, 1997, 393-402.

L. Greengard and J. Helsing. On the numerical evaluation of elastostatic fields in locally isotropic two-dimensional composites. J. Mech. Phys. Solids, 1998, 46, 1441-1462. https://doi.org/10.1016/s0022-5096(97)00041-0

L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. J. Comput. Phys., 1997, 135, 280-292. https://doi.org/10.1006/jcph.1997.5706

J. Helsing. An integral equation method for elastostatics of periodic composites. J. Mech. Phys. Solids, 1995, 43, 815-828. https://doi.org/10.1016/0022-5096(95)00018-e

S. Torquato. Random Heterogeneous Materials. Springer-Verlag, New York, 2002.

J. Byström and L.-E. Persson. Random versus periodic cells in homogenization. In: D. Hui (ed), Proceedings of ICCE/9, San Diego, USA, 2002, 83-84.

J. Byström. Influence of the inclusions distribution on the effective properties of heterogeneous media. Compos. Part B - Eng., 2003, 34(7), 587-592. https://doi.org/10.1016/s1359-8368(03)00064-7

J. Byström, J. Engström and P. Wall. Periodic approximation of elastic properties in random media. Advances in Algebra and Analysis, 2006, 1(2), 103-113.

H. Cheng and L. Greengard. On the numerical evaluation of electrostatic fields in dense random dispersions of cylinders. J. Comput. Phys., 1997, 136, 629-639. https://doi.org/10.1006/jcph.1997.5787

N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller and E. Teller. Equation of State Calculations by Fast Computing Machines. J. Chem. Phys., 1953, 21, 1087-1092. https://doi.org/10.2172/4390578

H. Gould and J. Tobochnik. An Introduction to Computer Simulation Methods. Addison Wesley, 1996.

B. D. Agarwal and L. J Broutman. Analysis and Performance of Fiber Composites. 2nd edition, Wiley Interscience, New York, 1990.

R. M. Christensen. Mechanics of composite materials. Wiley-Interscience, New York, 1979.

Y. C. Fung. Foundations of solid mechanics. Prentice Hall, Englewood cliffs, New Jersey, 1965.

Z. Hashin and W. Rosen. The elastic moduli of fibre-reinforced materials. Trans. ASME J. Appl. Mech., 1964, 223-232.

Published

2009-09-30

How to Cite

Byström, J. (2009) “Optimal design of a long and slender compressive strut”, The International Journal of Multiphysics, 3(3), pp. 235-258. doi: 10.1260/175095409788922275.

Issue

Section

Articles