A review of passive and active mixing systems in microfluidic devices

James Green, Arne Holdø, Aman Khan

Abstract


A review of mixing elements and devices for microscale fluidic devices is presented. The application, principles and characterisation of these devices is discussed, and the classifications based on these factors highlighted. A review of published works relating both experimental and simulation profiling of both passive and active mixing systems is presented. Each mixing principle upon which a design is based is discussed with regard to the fundamental physics that governs fluid behaviour. Passive systems covered include multi-lamination, split/recombination, chaotic advection, jet based, recirculation and droplet internal convection. Active systems covered include longitudinal and transverse pulsing, micro-stirrers, electro-kinetic methods, and acoustic/ultrasonic excitation. The review shows that the majority of devices have been designed within the past five years. Furthermore, at present, devices based on the multi-laminate method appear to outperform most other systems. 


Full Text:

PDF

References


deMello, A. & Wootton R., But what is it good for? Applications of microreactor technology for the fine chemical industry, Lab on a Chip, 2002, 2, 7N-13N.

Hessel, V. & Löwe, H., Microchemical Engineering: Components, Plant Concepts User Acceptance - Part I, Chem. Eng. Technol., 2003a, 26, 13-24.

Hessel, V. & Löwe, H., Microchemical Engineering: Components, Plant Concepts User Acceptance - Part II, Chem. Eng. Technol., 2003b, 26, 391-408.

Hessel, V. & Löwe, H., Microchemical Engineering: Components, Plant Concepts User Acceptance - Part III, Chem. Eng. Technol., 2003c, 26, 531-544.

Kestenbaum, H., de Oliveira, A.L., Schmidt, W., Schüth, F., Ehrfeld, W., Gebauer, K., Löwe, H., Richter, T., Lebiedz, D., Untiedt, I. & Züchner, H., Silver-Catalyzed Oxidation of Ethylene to Ethylene Oxide in a Microreaction System, Ind. Eng. Chem. Res., 2002, 41, 710-719.

Shah, K., Ouyang, X. & Besser, R.S., Microreaction for Microfuel Processing: Challenges and Prospects, Chem. Eng. Technol., 2005, 28, 303-313.

Kamholz, A.E., Weigl, B.H., Finlayson, B.A. & Yager, P., Quantitative Analysis of Molecular Interaction in a Microfluidic Channel: The T-Sensor, Anal. Chem., 1999, 71, 5340-5347.

Kamholz, A.E., Schilling, E.A. & Yager, P., Optical Measurement of Transverse Molecular Diffusion in a Microchannel, Biophys. J., 2001, 80, 1967-1972.

Burns, M.A., Johnson, B.N., Brahmasandra, S.N., Hanique, K., Webster, J.R., Krishnan, M., Sammarco, T.S., Man, P.M., Jones, D., Heldsinger, D., Mastrangelo, C.H. & Burke, D.T., An Integrated Nanoliter DNA Analysis Device, Science, 1998, 282, 484-487.

Hayes, M.A., Polson, N.A., Phayre, A.N. & Garcia, A.A., Flow-Based Microimmunoassay, Anal. Chem., 2001, 73, 5896-5902.

Ko, J.S., Yoon, H.C., Yang, H., Pyo, H.B., Chung, K.H., Kim, S.J. & Kim, Y.T., A polymer-based microfluidic device for immunosensing biochips, Lab on a Chip, 2003, 3, 106-113.

Srinivasan, V., Pamula, V.K. & Fair, R.B. An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids, Lab on a Chip, 2004, 4, 310-315.

Jensen, K.F., Microreaction engineering - is small better?, Chem. Eng. Sci., 2001, 56, 293-303.

McBride, M.T., Gammon, S., Pitesky, M., O'Brien, T.W., Smith, T., Aldrich, J., Langlois, R.G., Colston, B. & Venkateswaran, K.S., Multiplexed Liquid Arrays for Simultaneous Detection of Simulants of Biological Warfare Agents, Anal. Chem., 2003, 75, 1924-1930.

Neuman, M.R., Fair, R.B., Mehregany M. & Massoud, H.Z., Microelectromechanical Systems: A New Technology for Biomedical Applications, IEEE, 1993, 1545-1546.

Oki, A., Ogawa, H., Nagai, M., Shinbashi, S., Takai, M., Yokogawa A. & Horiike, Y., Development of healtcare chips checking life-style-related diseases, Mat. Sci. Eng. C, 2004, 24, 837-843.

Reyes, D.R., Iossifidis, D., Auroux, P.A. & Manz, A., Micro Total Analysis Systems. 1. Introduction, Theory, and Technology, Anal. Chem., 2002, 74, 2623-2636.

Auroux, P.A., Iossifidis, D., Reyes, D.R. & Manz, A., Micro Total Analysis Systems. 2. Analytical Standard Operations & Applications, Anal. Chem., 2002, 74, 2637-2652.

Jensen, K., Smaller, faster chemistry, Nature, 1998, 393, 735-737.

Houghton, P., Microfluidics Mixing Laboratory, MEMS Course Notes, University of Hertfordshire, 2004.

Dimotakis, P.E., Turbulent Mixing, Annu. Rev. Fluid Mech., 2005, 37, 329-56.

Patankar, S.V., Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corp., New York, 1980, 12-13.

Probstein, R.F., Physicochemical Hydrodynamics - An Introduction, 2nd edn., Wiley Interscience, New York, 1994, 116-123.

Chapman, B.K. & Leighton, D.T., Dynamic Viscous Resuspension, Int. J. Multiphase Flow, 1991, 17, 469- 483.

Leighton, D. & Acrivos, A., Viscous Resuspension, Chem. Eng. Sci., 1986, 41, 1377-1384.

Philips, R.J., Armstrong, R.C., & Brown, R.A., A consitutive equation for concentrated suspensions that account for shear-induced particle migration, Phys. Fluids A, 1992, 4, 30-40.

Glasgow, I. & Aubry, N., Enhancement of microfluidic mixing using time pulsing, Lab on a Chip, 2003, 3, 114-120.

Müller, S.D., Mezic ́, I., Walther, J.H. & Koumoutsakos, P., Transverse momentum micromixer optimization with evolution strategies, Computers & Fluids, 2004, 33, 521-531.

Tsai, J. & Lin, L., Active microfluidic mixer and gas bubble filter driven by thermal bubble micropump, Sens. Actu. A, 2002, 0, 665-671.

Baier, T., Drese, K.S., Schönfeld, F. & Schwab, U., A 􏰁-Fluidic Mixing Network, Chem. Eng. Technol., 2005, 28, 362-366.

Beebe, D.J., Adrian, R.J., Olsen, M.G., Stremler, M.A., Aref H. & Jo, B., Passive mixing in microchannels: Fabrication and flow experiments, Mec. Ind., 2001, 2, 343-348.

Mengeaud, V., Josserand, J. & Girault, H.H., Mixing Processes in a Zigzag Microchannel: Finite Element Simulations and Optical Study, Anal. Chem., 2002, 74, 4279-4286.

Stroock, A.D., Dertinger, S.K.W., Ajdari, A., Mezic ́, I., Stone H.A. & Whitesides, G.M., Chaotic Mixer for Microchannels, Science, 2002, 295, 647-651.

Kim, D.J., Oh, H.J., Park, T.H., Choo, J.B. & Lee, S.H., An easily integrative and efficient micromixer and its application to the spectroscopic detection of glucose-catalyst reactions, Analyst, 2005, 130, 293-298.

Yamaguchi, Y., Takagi, F., Watari, T., Yamashita, K., Nakamra, H., Shimizu, H. & Maeda, H., Interface configuration of the two layered laminar flow in a curved microchannel, Chem. Eng. J., 2004, 101, 367-372.

Sandeep, P. & Bisht, P.B., Concentration sensing based on radiative rate enhancement from a single microcavity, Chem. Phys. Lett., 2005, 415, 15-19.

Ullman, E.F., Kirakossian, H., Switchenko, A.C., Ishkanian, J., Ericson, M., Wartchow, C.A., Pirio, M., Pease, J., Irvin, B.R., Singh, S., Singh, R., Patel, R., Dafforn, A., Davalian, D., Skold, C., Kurn, N. & Wagner, D.B., Luminescent oxygen channelling assay (LOCITM): sensitive, broadly applicable homogeneous immunoassay method, Clin. Chem., 1996, 42, 1518-1526.

Patel, R., Pollner, R., de Keczer, S., Pease, J., Pirio, M., DeChene, N., Dafforn, A. & Rose, S., Quantification of DNA Using the Luminescent Oxygen Channelling Assay, Clin. Chem., 2000, 46, 1471-1477.

Koch, M., Witt, H., Evans A.G.R. & Brunnschweiler, A., Improved characterization technique for micromixers, J. Micromech. Microeng., 1999, 9, 156-158.

Bökenkamp, D., Desai, A., Yang, X., Tai, Y.C., Marzluff, E.M. & Mayo, S.L., Microfabricated Silicon Mixers for Submillisecond Quench-Flow Analysis, Anal. Chem., 1998, 70, 232-236.

Liu, Y.Z., Kim, B.J. & Sung, H.J., Two-fluid mixing in a microchannel, Int. J. Heat & Fluid Flow, 2004, 25, 986-995.

Chung, Y., Hsu, Y., Jen, C., Lu, M. & Lin, Y., Design of passive mixers utilizing microfluidic self-circulation in the mixing chamber, Lab on a Chip, 2004, 4, 70-77.

Ottino, J.M., Ranz, W.E. & Macosko, C.W., A lamellar model for analysis of liquid-liquid mixing, Chem. Eng. Sci., 1979, 34, 877-890.

Ottino, J.M., Lamellar mixing models for structured chemical reactions and their relationship to statistical models; macro and micromixing and the problem of averages, Chem. Eng. Sci., 1980, 35, 1377-1391.

Bessoth, F.G., deMello, A.J., & Manz, A., Microstructure for efficient continuous flow mixing, Anal. Commun., 1999, 36, 213-215.

Koch, M., Schabmueller, C.G.J., Evans, A.G.R. & Brunnschweiler, A., Micromachined chemical reaction system, Sens. Actu. A, 1999, 74, 207-210.

Freitas, S., Walz, A., Merkle, H.P. & Gander, B., Solvent extraction employing a static micromixer: a simple, robust and versatile technology for the microencapsulation of proteins, J. Microencapsulation, 2003, 20, 67- 85.

Löb, P., Pennemann, H. & Hessel, V., g/l-Dispersion in interdigital micromixers with different mixing chamber geometries, Chem. Eng. J., 2004, 101, 75-85.

Engler, M., Kockmann, N., Kiefer, T. & Woias, P., Numerical and experimental investigations on liquid mixing in static micromixers, Chem. Eng. J., 2004, 101, 315-322.

Haeberle, S., Brenner, T., Schlosser, H.P., Zengerle, R. & Ducrée, J., Centrifugal Micromixer, Chem. Eng. Technol., 2005, 28, 613-616.

Holden, M.A., Kumar, S., Beskok, A. & Cremer, P.S., Microfluidic diffusion diluter: bulging of PDMS microchannels under pressure-driven flow, J. Micromech. Microeng., 2003, 13, 412-418.

Blood, P.J., Denyer, J.P., Azzopardi, B.J., Poliakoff, M. & Lester, E., A versatile flow visualisation technique for quantifying mixing in a binary system: application to continuous supercritical water hydrothermal synthesis (SWHS), Chem. Eng. Sci, 2004, 59, 2853-2861.

Wong, S.H., Bryant, P., Ward, M. & Wharton, C., Micro T-mixer as a rapid mixing micromixer, Sens. Actu. B, 2004, 100, 359-379.

Gobby, D., Angeli, P. & Gavriilidis, A., Mixing characteristics of T-type microfluidic mixers, J. Micromech. Microeng., 2001, 11, 126-132.

Johnson, T.J., Ross, D. & Locascio, L.E., Radpid Microfluidic Mixing, Anal. Chem., 2002, 74, 45-51.

Wong, S.H., Bryant, P., Ward, M. & Wharton, C., Investigation of mixing in a cross-shaped micromixer with static mixing elements for reaction kinetics studies, Sens. Actu. B, 2003, 95, 414-424.

Branebjerg, J., Gravesen, P., Krog J.P. & Nielsen, C.R., Fast mixing by lamination, IEEE, 1996, 441-446.

Schönfeld, F., Hessel, V. & Hoffmann, C., An optimised split-and-recombine micro-mixer with uniform 'chaotic' mixing, Lab on a Chip, 2004, 4, 65-69.

Bertsch, A., Heimgartner, S., Cousseau, P. & Renaud, P., 3D Micromixers - Downscaling Large Scale Industrial Static Mixers, IEEE, 2001, 507-510.

Kim, D.S., Lee, S.H., Kwon, T.H. & Ahn, C.H., A serpentine laminating micromixer combining slitting/recombination and advection, Lab on a Chip, 2005, 5, 739-747.

Neils, C., Tyree, Z., Finlayson, B. & Folch, A., Combinatorial mixing of microfluidic streams, Lab on a Chip, 2004, 4, 342-350.

Jiang, F., Drese, K.S., Hardt, S., Küpper, M. & Schönfeld, F., Helical flows and Chaotic Mixing in Curved Micro Channels, AIChE Journal, 2004, 50, 2297-2305.

Xia, H.M., Wan, S.Y.M., Shu, C. & Chew, Y.T., Chaotic micromixers using two-layer crossing channels to exhibit fast mixing at low Reynolds numbers, Lab on a Chip, 2005, 5, 748-755.

Stroock, A.D., Dertinger, S.K., Whitesides, G.M. & Ajdari, A., Patterning Flows Using Grooved Surfaces, Anal. Chem., 2002, 74, 5306-312.

Kang, T.G. & Kwon, T.H., Colored particle tracking method for mixing analysis of chaotic micromixers, J. Micromech. Microeng., 2004, 14, 891-899.

Howell, P.B., Mott, D.R., Fertig, S., Kaplan, C.R., Golden, J.P., Oran, E.S. & Ligler, F.S., A microfluidic mixer with grooves placed on the top and bottom of the channel, Lab on a Chip, 2005, 5, 524-530.

Aubin, J., Fletcher, D.F. & Xuereb, C., Design of micromixers using CFD modelling, Chem. Eng. Sci., 2005, 60, 2503-2516.

Veenstra, T.T., Lammerink, T.S.J., Elwenspoek, M.C., & van den Berg, A., Characterization method for a new diffusion mixer applicable in micro flow injection analysis systems, J. Micromech. Microeng., 1999, 9, 199-202.

Drese, K.S., Optimization of interdigital micromixers via analytical modeling - exemplified with SuperFocus mixer, Chem. Eng. J., 2004, 101, 403-407.

Dussan,V E.B. & Davis, S.H., On the motion of a fluid-fluid interface along a solid surface, J. Fluid Mech, 1974, 65, 71-95.

Huh, C. & Scriven, L.E., Hydrodynamic model of steady movement of a solid/liquid/fluid contact line, J. Coll. Int. Sci, 1971, 37, 196-207.

Duda, J.L. & Vrentas, J.S., Steady Flow in the Region of Closed Streamlines II Cylindrical Cavity, J. Fluid Mech, 1971, 45, 247-260.

Fowler, J., Moon, H. & Kim, C., Enhancement of Mixing by Droplet-Based Microfluidics, IEEE, 2002, 97- 100.

Hosokawa, K., Fujii, T. & Endo, I., Handling of Picoliter Liquid Samples in a Poly(dimethylsiloxane)_Based Microfluidic Device, Anal. Chem., 1999, 71, 4781-4785.

Prins, M.W.J., Welters, W.J.J. & Weekamp, J.W., Fluid Control in Multichannel Structures by Electrocapillary Pressure, Science, 2001, 291, 277-280.

Pollack, M.G., Shenderov, A.D. & Fair, R.B., Electrowetting-based actuation of droplets for integrated microfluidics, Lab on a Chip, 2002, 2, 96-101.

Zeng, J. & Korsmeyer, T., Principles of droplet electrohydrodynamics for lab-on-a-chip, Lab on a Chip, 2004, 4, 265-277.

Paik, P., Pamula, V.K., Pollack, M.G. & Fair, R.B., Electrowetting-based droplet mixers for microfluidic systems, Lab on a Chip, 2003a, 3, 28-33.

Paik, P., Pamula, V.K. & Fair, R.B., Rapid droplet mixers for digital microfluidic systems, Lab on a Chip, 2003b, 3, 253-259.

Handique, K. & Burns, M.A., Mathematical modeling of drop mixing in a slit-type microchannel, J. Micromech. Microeng., 2001, 11, 548-554.

Ariyapadi, S., McMillan, J., Zhou, D., Berruti, F., Briens, C. & Chan, E., Modeling the mixing of a gas-liquid spray jet injected in a gas-solid fluidized bed: The effect of the draft tube, Chem. Eng. Sci., 2005, 60, 5738- 5750.

Kouakou, E., Salmon, T., Toye, D., Marchot, P. & Crine, M., Gas-liquid mass transfer in a circulating jet- loop nitrifying MBR, Chem. Eng. Sci., 2005, 60, 6346-6353.

Miyake, R., Lammerink, T.S.J., Elwenspoek, M. & Fluitman, J.H.J., Micro Mixer with Fast Diffusion, IEEE, 1993, 248-253.

Ehlers, St., Elgeti, K., Menzel, T. & Wießmeier, G., Mixing in the offstream of a microchannel system, Chem. Eng. Processing, 2000, 39, 291-298.

Cherepanov, A.V., & de Vries, S., Microsecond freeze-hyperquenching: development of a new ultrafast micro-mixing and sampling technology and application to enzyme catalysis, Biochimica & Biophysica, 2004, 1656, 1-31.

Hong, C., Choi, J. & Ahn, C.H., A novel in-plane passive microfluidic mixer with modified Tesla structures, Lab on a Chip, 2004, 4, 109-113.

Kuksenok, O., Yeomans, J.M. & Balazs, A.C., Using patterned substrates to promote mixing in microchannels, Phys. Rev. E., 2002, 65, 031502.

Lu, L.H., Ryu, K.S. & Liu, C., A Magnetic Microstirrer and Array for Microfluidic Mixing, J. MEMS, 2002, 11, 462-469.

Ryu, K.S., Shaikh, K., Goluch, E., Fan, Z. & Liu, C., Micro magnetic stir-bar mixer integrated with parylene microfluidic systems, Lab on a Chip, 2004, 4, 608-613.

Niu, X. & Lee, Y.K., Efficient spatial-temporal chaotic mixing in microchannels, J. Micromech. Microeng., 2003, 13, 454-462.

Dodge, A., Jullien, M., Lee, Y., Niu, X., Okkels, F. & Tabeling, P., An example of a chaotic micromixer: the cross-channel micromixer, C. R. Physique, 2004, 5, 557-563.

Lee, Y., Deval, J., Tabeling, P. & Ho, C., Chaotic Mixing in Electrokinetically and Pressure Driven Micro Flows, Proc. 14th IEEE MEMS, 2001, , 483-486.

Karniadakis, G.E. & Beskok, A., Micro Flows - Fundamentals and Simulation, Springer-Verlag, New York, 2002, 215-221.

Pribyl, M., Snita, D., Hasal, P. & Marek, M., Modeling of electric-field driven transport processes in microdevices for immunoassay, Chem. Eng. J., 2004, 101, 303-314.

West, J., Karamata, B., Lillis, B., Gleeson, J.P., Alderman, J., Collins, J.K., Lane, W., Mathewson, A. & Berney, H., Application of magnetohydrodynamic actuation to continuous flow chemistry, Lab on a Chip, 2002, 2, 224-230.

Solomon, T.H. & Mezi_, I., Uniform resonant chaotic mixing in fluid flows, Nature, 2003, 425, 376-380.

Guenat, O.T., Ghiglione, D., Morf, W.E. & de Rooij, N.F., Partial electroosmotic pumping in complex capillary systems - Part 2: Fabrication and application of a micro total analysis system (_TAS) suited for continuous volumetric nanotitrations, Sens. Actu. B, 2001, 72, 273-282.

Fu, L.M., Yang, R.J. & Lee, G.B., Electrokinetic Focusing Injection Methods on Microfluidic Devices, Anal. Chem., 2003, 75, 1905-1910.

Wu, H. & Liu, C., A novel electrokinetic micromixer, Sens. Actu. A, 2005, 118, 107-115.

Lin, J.L., Lee, K.H. & Lee, G.B., Active micro-mixers utilizing a gradient zeta potential induced by inclined buried shielding electrodes, J. Micromech. Microeng., 2006, 16, 757-768.

Vivek, V., Zeng, Y. & Kim, E.S., Novel Acoustic-Wave Micromixer, Proc. IEEE, 2000, 668-673.

Liu, R.H., Yang, J., Pindera, M.Z., Athavale, M. & Grodzinski, P., Bubble-induced acoustic micromixing, Lab on a Chip, 2002, 2, 151-157.

Liu, R.H., Lenigk, R., Druyor-Sanchez, R.L., Yang, J. & Grodzinski, P., Hybridization Enhancement Using Cavitation Microstreaming, Anal. Chem., 2003, 75, 1911-1917.

Rife, J.C., Bell, M.I., Horwitz, J.S., Kabler, M.N., Auyeung, R.C.Y. & Kim, W.J., Miniature valveless ultrasonic pumps and mixers, Sens. Actu. A, 2000, 86, 135-140.

Yang, Z., Goto, H., Matsumoto, M. & Maeda, R., Ultrasonic micromixer for microfluidic systems, IEEE, 2000, 80-85.

Yang, Z., Matsumoto, S., Goto, H., Matsumoto, M. & Maeda, R., Ultrasonic micromixer for microfluidic systems, Sens. Actu. A, 2001, 93, 266-272.

Schneider, M.A., Maeder, T., Ryser, P. & Stoessel, F., A microreactor-based system for the study of fast exothermic reactions in liquid phase: characterisation of the system, Chem. Eng. J., 2004, 101, 241-250.

Shan, X.C., Wang, Z.F., Jin, Y.F., Wu, M., Hua, J., Wong, C.K. & Maeda, R., Studies on a micro combustor for gas turbine engines, J. Micromech. Microeng., 2005, 15, 215-221.




DOI: http://dx.doi.org/10.1260/175095407780130544

Copyright (c) 2016 The International Journal of Multiphysics