Numerical investigation of vibration and dynamic pressure of a vertical axis wind turbine

Authors

  • F Erchiqui
  • M Souli
  • M Moatamedi
  • E Albahkali

DOI:

https://doi.org/10.1260/1750-9548.8.4.421

Abstract

In the environmental field, the problems of noise reduction have become a major preoccupation, particularly on the noise generated by the acoustic radiation pressure produced by wind turbines. This paper is aimed at presenting the investigation on the application of variational indirect boundary element method for study the acoustic radiation pressure produced by vertical-axis wind turbine. For this initiative, we considered Neumann boundary condition. The formulation has two advantages: the first one is to avoid the meshing of the fluid domain; the second advantage is to treat the singular integral of the Green's function, solution of fundamental solution of the wave equation in frequency domain.

References

Ragheb, M. Web Text: Wind turbines in the urban environment:https://netfiles.uiuc.edu/mragheb/www/NPRE%20475%20Wind%20Power%20Systems/Wind%20Turbines%20in%20the%20Urban%20Environment.pdf

John, O. Dabiri. Potential order-of-magnitiude enhancement of wind farm power density via counter-rotating vertical-axis wind turbine array. Journal of renewable and sustainable energy. Vol. 3, Issue 4, July 19, 2011. https://doi.org/10.1063/1.3608170

Hamdi, M. A. Formulation variationnelle par équations intégrales pour le calcul de champs acoustiques linéaires proches et lointains. Ph.D. Thesis, Université de technologie de Compiègne, 1982.

Erchiqui, F. Modélisation et simulation des interactions fluide structure par une méthode variationnelle couplant les équations intégrales et les éléments finis. Ph.D. Thesis, Université Laval, Québec, 1994.

Tournour, M. Modélisation numérique par élément finis et éléments finis de frontière du comportement vibroacoustique de structures complexes assemblées et couplée à une Cavite. Ph.D. Thesis, Université de technologie de Compiègne, 1999. https://doi.org/10.3166/reef.11.463-477

Wu, T. W. Three dimensional problems, In Boundary element acoustics: Fundamentals and computer codes. Wit press (ed.); Southampton: Boston, 2000; pp. 51-67.

Bajaj, C., Xu, G. and Warren, J. Acoustics scattering on arbitrary manifold surfaces. Geometric Modelling and Processing; Theory and Applications, July 10-12, 2002, Wako, Saitama, Japan. https://doi.org/10.1109/gmap.2002.1027498

Sayhi, M. N., Ousset, Y. and Verchery, G. Solution of radiation problems by collocation of integral formulation in terms of single and double potential. Jour. of. Sound and Vibration, 74, 2, p.188-204, 1981. https://doi.org/10.1016/0022-460x(81)90503-4

Jeans, R. and Mathews, I. C. A comparison of numerical collocation and variational procedures to the hypersingular acoustic integral operator. Comput. Methods Appl. Mech. Eng. 101, 5-26,1992. https://doi.org/10.1016/0045-7825(92)90012-9

Erchiqui, F. and Gakwaya, A. Boundary element formulation for variational structurefluid interaction pronblems. Boundary element method 13, C.F Brebbia S. Gipson (ed), CMP-Elsevier, p. 219-231 (1991). https://doi.org/10.1007/978-94-011-3696-9_18

Amdi, M., Souli, M., Hargreaves, J. and Erchiqui F. Numerical Investigation of a Vibroacoustic Analysis with Different Formulations, CMES-Computer modeling in engineering & sciences, 2012, Vol. 85, Issue: 4, Pages: 329-345

Jeans, R. and Mathews, I. C. Solution of fuid structure interaction problems using a coupled finite element and variational boundary element technique. Journal of Acoustical Society of America 1990; 88(5):2459-2466. https://doi.org/10.1121/1.400086

Chen, Z. S, Hofstetter, G. and Mang H. A. A symmetric Galerkin formulation of the boundary element method for acoustic radiation and scattering. Journal of Computational Acoustics 1997; 5(2):219-241. https://doi.org/10.1142/s0218396x97000137

Bonnet, M., Maier, G. and Polizzotto, C. Symmetric Galerkin boundary element method. Applied Mechanics Reviews 1998; 51:669-704. https://doi.org/10.1115/1.3098983

Wang, W. and Atalla, N. A numerical algorithm for double surface integrals over quadrilaterals with a 1/R singularity. Communications in Numerical Methods in Engineering 1997; 13:885-890. https://doi.org/10.1002/(sici)1099-0887(199711)13:11<885::aid-cnm112>3.0.co;2-d

Wu, X. F., Pierce, A. D. and Ginsberg, J. H. Variational method for computing surface acoustic pressure on vibrating bodies, applied to transversely oscillating disks. IEEE Journal of Oceanic Engineering, 12, 412:418, 1987. https://doi.org/10.1109/joe.1987.1145252

Zhang, Z., Vlahopoulos, N., Allen, T. and Zhang, K. Y. A source reconstruction process based on an indirect variational boundary element formulation. Engineering Analysis with Boundary Elements 2001; 25:39-114. https://doi.org/10.1016/s0955-7997(00)00064-3

Published

2014-12-31

How to Cite

Erchiqui, F., Souli, M., Moatamedi, M. and Albahkali, E. (2014) “Numerical investigation of vibration and dynamic pressure of a vertical axis wind turbine”, The International Journal of Multiphysics, 8(4), pp. 421-436. doi: 10.1260/1750-9548.8.4.421.

Issue

Section

Articles

Most read articles by the same author(s)

1 2 3 > >>