Determination of Thermal Properties of Fresh Water and Sea Water Ice using Multiphysics Analysis

T Rashid, H Khawaja, K Edvardsen


This paper presents a methodology to determine the thermal conductivity of ice using multiphysics analysis. This methodology used a combination of both experimentation and numerical simulation. In the experimental work, an ice block is observed using an infrared camera. The results reveal the variation in temperature over the surface. These results are dependent on two primary heat transfer parameters, namely, conductivity of ice within the ice cuboid and overall heat transfer coefficient. In addition to these two parameters, the surrounding temperature also affects the observed temperature profile. In the numerical simulation, the same behaviour is simulated using multiphysics tools. In this work, the finite difference method is used to discretize the heat equation and is solved using an FTCS (Forward-Time Central-Space) method in MATLAB® software. The inputs to the simulation are the thermal properties of ice. These parameters are varied to match with the experimental results, hence revealing the real-time thermal properties of ice and surroundings. 

Full Text:



Dorsey, N.E., Properties of ordinary water-substance. 1940. CrossRef

Giauque, W. and J. Stout, The Entropy of Water and the Third Law of Thermodynamics. The Heat Capacity of Ice from 15 to 273° K. Journal of the American Chemical Society, 1936. 58(7): p. 1144-1150. CrossRef

Lonsdale, D.K. The structure of ice. in Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 1958. The Royal Society. CrossRef

Ginnings, D.C., An Improved Ice Calorimeter-the Determination of its Calibration Factor and the Density of Ice at ooe. 1947. CrossRef

Fukusako, S., Thermophysical properties of ice, snow, and sea ice. International Journal of Thermophysics, 1990. 11(2): p. 353-372. CrossRef

Irvine, W.M. and J.B. Pollack, Infrared optical properties of water and ice spheres. Icarus, 1968. 8(1): p. 324-360. CrossRef

Powell, R.W., Thermal conductivities and expansion coefficients of water and ice. Advances in Physics, 1958. 7(26): p. 276-297. CrossRef

Jakob, M. and S. Erk, Warmedehnung des Eises zwischen 0 und-253. Z Ges. Kalte-Ind., 1928. 35: p. 125-130.

Landauer, J. and H. Plumb, Measurements on anisotropy of thermal conductivity of ice US Army SIPRE Research Report No. 16. 1956.

Jakob, M. and S. Erk, Die Wärmeleitfähigkeit von Eis zwischen 0 und-125. Zeitschr. f. techn Physik, 1929. 10(12): p. 623-624.

Ratcliffe, E., The thermal conductivity of ice new data on the temperature coefficient. Philosophical Magazine, 1962. 7(79): p. 1197-1203. CrossRef

Dillard, D.S. and K. Timmerhaus, Low temperature thermal conductivity of solidified H2O and D2O. Pure and Applied Cryogenics, 1966. 4: p. 66.

Sakazume, S. and N. Seki, Thermal properties of ice and snow at low temperature region. Bulletin of the Japanese Society of Mechanical Engineering, 1978. 44: p. 2059-2069. CrossRef

Choi, Y.H., Effects of Temperature and Composition on the Thermal Conductivity and Thermal Diffusivity of Some Food Components. Korean Journal of Food Science Technology, 1986. 18(5).

Yen, Y.-C., Review of thermal properties of snow, ice and sea ice. 1981, DTIC Document.

Engineering & Design –Ice Engineering: Manual No. 1110-2-1162. 1996, U.S. Army Corps of Engineers: Washington D.C.

Tarnawski, V.R., W.H. Leong, and T. Momose, Modeling the Thermal Conductivity of Frozen Foods, in Encyclopedia of Agrophysics. 2014, Springer. p. 483-489. CrossRef

Sakazume, S. and N. Seki, Bulletin of J. S. M. E, 1980. 46 p. 1119-1126.

Schwerdtfeger, P., The thermal properties of sea ice. Journal of Glaciology, 1963. 4: p. 789-807.

Ono, N., Thermal properties of sea ice. i- measurements of the thermal conductivity of young winter ice. Low Temperature Science, 1965. 23: p. 167-176.. CrossRef

Pringle, D., H. Trodahl, and T. Haskell, Direct measurement of sea ice thermal conductivity: No surface reduction. Journal of Geophysical Research: Oceans (1978–2012), 2006. 111(C5). CrossRef

Rashid, T.K., Hassan Abbas; Edvardsen, Kåre; Mughal, Umair Najeeb, Infrared Thermal Signature Evaluation of a Pure Ice Block, in Sensorcomm 2015, International Academy, Research and Industry Association (IARIA): Venice ,Itlay.

Rashid, T., et al., Infrared Thermal Signature Evaluation of a Pure and Saline Ice for Marine Operations in Cold Climate. Sensors & Transducers, 2015. 194(11): p. 62-68.

H. Khawaja, T.R., O. Eiksund, E. Broadal, K. Edvardsen, Multiphysics Simulation of Infrared Signature of an Ice Cube. The International Journal of Multiphysics, 2016. In Review.

Cannon, J.R., The One-Dimensional Heat Equation. 1984: Cambridge University Press. CrossRef

Widder, D.V., The Heat Equation. 1976: Elsevier Science.

Moran, M.J., Introduction to thermal systems engineering: thermodynamics, fluid mechanics, and heat transfer. 2003: Wiley.

Patankar, S., Numerical Heat Transfer and Fluid Flow. 1980: Taylor & Francis. CrossRef

Courant, R., K. Friedrichs, and H. Lewy, Über die partiellen Differenzengleichungen der mathematischen Physik. Mathematische Annalen, 1928. 100(1): p. 32-74. CrossRef

MATLAB®, version 2015, The MathWorks Inc.: Natick, Massachusetts.

ThermaCAM, Researcher Pro 2.9. 2007, FLIR Systems AB: Sweden.

Laboratory, F.P., Centennial Edition: Wood Handbook: Wood As an Engineering Material. 2013: CreateSpace Independent Publishing Platform.

Petrenko, V.F. and R.W. Whitworth, Physics of Ice. 2002: OUP Oxford. CrossRef

Ramires, M.L.V., et al., Standard Reference Data for the Thermal Conductivity of Water. Journal of Physical and Chemical Reference Data, 1995. 24(3): p. 1377-1381. CrossRef


Copyright (c) 2016 The International Journal of Multiphysics