Free vibration analysis of dragonfly wings using finite element method

M Darvizeh, A Darvizeh, H Rajabi, A Rezaei

Abstract


In the present work, investigations on the microstructure and mechanicalproperties of the dragonfly wing are carried out and numerical modelingbased on Finite Element Method (FEM) is developed to predict Flightcharacteristics of dragonfly wings. Vibrational behavior of wings typestructures is immensely important in analysis, design and manufacturing ofsimilar engineering structures. For this purpose natural frequencies andmode shapes are calculated. In addition, the kind of deformation in eachmode shape evaluated and the ratio between numerical natural frequencyand experimental natural frequency presented as damping ratio. Theresults obtain from present method are in good agreement with sameexperimental methods.

Full Text:

PDF

References


R.J. Wootton, Support and deformability in insect wings, Journal of Zoology 193 (1981) 447-468.
CrossRef

R.J. Wootton, Functional morphology of insect wings, Annu. Rev. Entomol. 37 (1992) 113-119.
CrossRef

C.P. Ellington, The aerodynamics of hovering insect flight. I-VI. Philos. Trans. Roy. Soc. London B, Biolog. Sci. 305 (1984) 1-181.

C.P. Ellington, The aerodynamics of hovering insect flight. III. Kinematics, Philos. , Philos Roy Soc London Ser B 305 (1984) 41-49.

R. Ennos, The inertial cause of wing rotation in Diptera, J. Exp. Biol. 140 (1989) 161-169.

R. Ennos, The importance of torsion in the design of insect wings, J. Exp. Biol. 140 (1988) 137-142.

R. Ennos, Comparative functional morphology of the wings of Diptera, Zoological Journal Of The Linnean Society 96 (1989) 27-47.
CrossRef

Antonia B. Kesel, Ute Philippi, Werner Nachtigall. Biomechanical aspects of the insect wing: an analysis using the finite element method, Computers in Biology and Medicine 28 (1998) 423-437
CrossRef

T. Wagner, C. Neinhuis, and W. Barthlott. Wettability and contaminability of insect wings as a function of their surface sculptures, Acta Zool. 3 (1996) 213-225.

S.A. Combes, T.L. Daniel, Flexural stiffness in insect wings I. Scaling and the influence of wing venation, Journal of Experimental Biology 206 (2003) 2979-2987.
CrossRef

R.J. Wootton, Functional morphology of insect wings, Annu. Rev. Entomol. 37 (1992) 113-140.
CrossRef

L. Zeng, H. Matsumoto, S. Sunada, T. Ohnuki, K. Kawachi, Two-dimensional noncontact measurement of the natural frequencies of dragonfly wings using a quadrant position sensor, J. Optical Engineering 34 (1995) 1226-1231
CrossRef

J.S. Chen, J.Y. Chen, Y.F. Chou, On the natural frequencies and mode shapes of dragonfly wings, J. Sound and Vibration 313 (2008) 643-654.
CrossRef

X.S. Wang, Y. Li, Y.F. Shi, Effects of sandwich microstructures on mechanical behaviors of dragonfly wing vein, J. Composites Science and Technology 68 (2008) 186-192
CrossRef

R.J. Wootton, Geometry and mechanics of insect hindwing fans- a modeling approach, Proc Roy Soc London B 262 (1995) 181-187.
CrossRef

R.J. Wootton, K.E. Evans, R.C. Herbert, C.W. Smith, The hind wing of the desert locust (schistocerca gregaria forskal), I. Functional morphology and mode of operation, J. Exp. Biol. 203 (2000) 2921-2931.

C.W. Smith, R.C. Herbert, R.J. Wootton, K.E. Evans, The hind wing of the desert locust (schistocerca gregaria forskal), II. Mechanical properties and functioning of the membrane, J. Exp. Biol. 203 (2000) 2933-2943.

A.C. Neville, Biology of the arthropod cuticle, Zoophysiology and Ecology, (W. S. Hoar, J. Jacobs, H. Langer, and M. Lindauer, eds.), Springer Verlag, Berlin vol. 4-5 (1975) 1-448.

B.K. Filshie, Fine structure of the cuticle o insects and other arthropods, In: King R.C., Akai H., editors, Insects ultrastructure, New York: Plenum Press 1 (1982) 281-312.

P. Kreuz, A. Kesel, M. Kempf, M. Göken, H. Vehoff, and W. Nachtigall, Mechanische Eigenschaften biologischer Materialien am Beispiel Insektenflügel. BIONA Rep. 14 (1999) 201-202.

F. Song, K.W. Xiao, K. Bai, Y.L. Bai, Microstructure and nanomechanical properties of the wing membrane of dragonfly, Mat. Sic. Eng. A, 457 (2007) 254-260.

S.S. Rao, Mechanical Vibration, Addison-Wesley, New York, (1995).




DOI: http://dx.doi.org/10.1260/175095409787924454

Copyright (c) 2016 The International Journal of Multiphysics