Validation of robust SPH schemes for fully compressible multiphase flows

Authors

  • I Zisis
  • R Messahel
  • A Boudlal
  • B Linden
  • B Koren

DOI:

https://doi.org/10.1260/1750-9548.9.3.225

Abstract

The present study examines the ability of the SPH number-density scheme to treat multiphase problems of the fully compressible regime. The number-density scheme is extended to the fully compressible regime, using the standard variational SPH framework and incorporate artificial diffusion coming from a generic formula. Aiming at robust schemes, we adopt the differential form of mass conservation. The performance of this scheme is studied with the help of two benchmark tests. It is shown that the standard variational framework of SPH may treat multiphase processes in the fully compressible regime, without reverting to non-standard formulations. The SPH solutions are compared to solutions coming from the Arbitrary Lagrangian Eulerian method and are validated against exact solutions.

References

A. Colagrossi and M. Landrini. Numerical simulation of interfacial flows by smoothed particle hydrodynamics. Journal of Computational Physics, 191(2):448–475, 2003. https://doi.org/10.1016/s0021-9991(03)00324-3

N. Grenier, M. Antuono, A. Colagrossi, D. Le Touzé and B. Alessandrini. An hamiltonian interface sph formulation for multi-fluid and free surface flows. Journal of Computational Physics, 228(22):8380–8393, 2009. https://doi.org/10.1016/j.jcp.2009.08.009

X. Y. Hu and N. A. Adams. A multi-phase sph method for macroscopic and mesoscopic flows. J. Comput. Phys., 213(2):844–861, April 2006. https://doi.org/10.1016/j.jcp.2005.09.001

J. J. Monaghan and A. Kocharyan. Sph simulation of multi-phase flow. Computer Physics Communications, 87:225–235, 1995. https://doi.org/10.1016/0010-4655(94)00174-z

J. J. Monaghan. Smoothed particle hydrodynamics. Reports on Progress in Physics, 68(8):1703, 2005.

Rafiee A. and Monaghan, J. J. A simple sph algorithm for multi-fluid flow with high densityratios. International Journal for Numerical Methods in Fluids, 71(5): 537–561, 2013. https://doi.org/10.1002/fld.3671

S. Borve and D. J. Price. Hydrodynamical instabilities in compressible fluids using sph. Proceedings of the 4th SPHERIC workshop, May 26–29, Hannover, 2009.

D. J. Price. Smoothed particle hydrodynamics and magnetohydrodynamics. Journal of Computational Physics, 231(3):759–794, 2012. Special Issue: Computational Plasma Physics. https://doi.org/10.1016/j.jcp.2010.12.011

D. J. Price. Modelling discontinuities and kelvin-helmholtz instabilities in sph. Journal of Computational Physics, 227(24):10040–10057, 2008. https://doi.org/10.1016/j.jcp.2008.08.011

I. Zisis, B. Linden, C. Giannopapa and B. Koren. On the derivation of sph schemes for shocks through inhomogeneous materials. International Journal of Multiphysics, 9(2):83–100, 2015. https://doi.org/10.1260/1750-9548.9.2.83

J. J. Monaghan. Sph and riemann solvers. Journal of Computational Physics, 136(2):298–307, 1997. https://doi.org/10.1006/jcph.1997.5732

N. Aquelet, M. Souli and L. Olovson. Euler lagrange coupling with damping effects: Application to slamming problems. Computer Methods in Applied Mechanics and Engineering, 195:110–132, 2005. https://doi.org/10.1016/j.cma.2005.01.010

M. Souli and F. Erchiqui. Experimental and numerical investigation of hyper elastic membrane inflation using fluid structure coupling. Computer Modelling in Engineering and Sciences, 77:183–200, 2011.

J. J. Monaghan and R.A Gingold. Shock simulation by the particle method sph. Journal of Computational Physics, 52(2):374–389, 1983. https://doi.org/10.1016/0021-9991(83)90036-0

L.-R. Plumerault. Numerical modelling of aerated-water wave impacts on a coastal structure, 2009.

Published

2015-09-30

How to Cite

Zisis, I., Messahel, R., Boudlal, A., Linden, B. and Koren, B. (2015) “Validation of robust SPH schemes for fully compressible multiphase flows”, The International Journal of Multiphysics, 9(3), pp. 225-234. doi: 10.1260/1750-9548.9.3.225.

Issue

Section

Articles