Numerical Study of the Effect of Viscous Heat Dissipation and Compression Work on Microscale Rayleigh–Bénard Convection Based on a Coupled Thermal Lattice Boltzmann Method
DOI:
https://doi.org/10.21152/1750-9548.12.2.101Abstract
In the present work, an improved double-distribution-function thermal lattice Boltzmann method (LBM) is developed for analyzing the effect of viscous heat dissipation and compression work on microscale Rayleigh–Bénard convection. In the proposed method a temperature change is introduced into the LB momentum equation in the form of a momentum source to realize the coupling between the momentum and the energy fields; two sets of evolution equations are established, one for the mass and momentum conservation and the other for the total energy that incorporates viscous heat dissipation and compression work. Numerical results show that the effect of viscous heat dissipation and compression work on the temperature distribution, flow distribution, and average Nusselt number at some Rayleigh numbers and aspect ratios is significant.
References
Yang, H.and Zhu Z., Numerical simulation of turbulent Rayleigh–Benard convection. International Communications in Heat and Mass Transfer, 2006, 33(2): p. 184-190. https://doi.org/10.1016/j.icheatmasstransfer.2005.10.016
Pallares, J., Cuesta I.and Grau F.X., Laminar and turbulent Rayleigh–Bénard convection in a perfectly conducting cubical cavity, International Journal of Heat and Fluid Flow, 6, 2002, 23(3): p. 346-358. https://doi.org/10.1016/s0142-727x(02)00182-0
Zhou, Q.and Xia K.-Q., Physical and geometrical properties of thermal plumes in turbulent Rayleigh–Bénard convection. New Journal of Physics, 2010, 12(7): p. 075006. https://doi.org/10.1088/1367-2630/12/7/075006
Sun, C., Cheung Y.-H.and Xia K.-Q., Experimental studies of the viscous boundary layer properties in turbulent Rayleigh–Bénard convection. Journal of Fluid Mechanics, 2008, 605(6): p. 79-113. https://doi.org/10.1017/s0022112008001365
Sharif, M.A.R.and Mohammad T.R., Natural convection in cavities with constant flux heating at the bottom wall and isothermal cooling from the sidewalls. International Journal of Thermal Sciences, 2005, 44(9): p. 865-878. https://doi.org/10.1016/j.ijthermalsci.2005.02.006
Valencia, L., Pallares J., Cuesta I.and Grau F.X., Turbulent Rayleigh–Bénard convection of water in cubical cavities: A numerical and experimental study. International Journal of Heat and Mass Transfer, 2007, 50(15-16): p. 3203-3215. https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.013
Kao, P.H., Chen Y.H.and Yang R.J., Simulations of the macroscopic and mesoscopic natural convection flows within rectangular cavities. International Journal of Heat and Mass Transfer, 2008, 51(15-16): p. 3776-3793. https://doi.org/10.1016/j.ijheatmasstransfer.2008.01.003
Chakraborty, S.and Chatterjee D., An enthalpy-based hybrid lattice-Boltzmann method for modelling solid-liquid phase transition in the presence of convective transport. Journal of Fluid Mechanics, 2007, 592(592): p. 155-175. https://doi.org/10.1017/s0022112007008555
He, X., Chen S.and Doolen G.D., A novel thermal model for the lattice Boltzmann method in incompressible limit. Journal of Computational Physics, Oct 10 1998, 146(1): p. 282-300. https://doi.org/10.1006/jcph.1998.6057
Partha, M.K., Murthy P.and Rajasekhar G.P., Effect of viscous dissipation on the mixed convection heat transfer from an exponentially stretching surface. Heat & Mass Transfer, 2005, 41(4): p. 360-366. https://doi.org/10.1007/s00231-004-0552-2
Pantokratoras, A., Effect of viscous dissipation and pressure stress work in natural convection along a vertical isothermal plate. New results. International Journal of Heat & Mass Transfer, 2003, 46(25): p. 4979-4983. https://doi.org/10.1016/s0017-9310(03)00321-1
Alam, M.M., Alim M.and Chowdhury M.M., Effect of pressure stress work and viscous dissipation in natural convection flow along a vertical flat plate with heat conduction, Journal of Naval Architecture and Marine Engineering, 2006, 3(2): p. 69-76. https://doi.org/10.3329/jname.v3i2.921
Lelea, D., Cioabla A.E.and Mihon L., The micro-tube heat transfer and fluid flow of methanol. Annals of Daaam & Proceedings, 2010.
Hung, L.H.and Yang J.Y., A coupled lattice Boltzmann model for thermal flows. Ima Journal of Applied Mathematics, 2011, 76(5): p. 774-789. https://doi.org/10.1093/imamat/hxr010
Zhang, J., Lattice Boltzmann method for microfluidics: models and applications. Microfluidics & Nanofluidics, 2011, 10(1): p. 1-28. https://doi.org/10.1007/s10404-010-0624-1
Zhang, J., Yan G., Shi X.and Dong Y., A lattice Boltzmann model for the compressible Euler equations with second‐order accuracy. International Journal for Numerical Methods in Fluids, 2009, 60(1): p. 95-117. https://doi.org/10.1002/fld.1883
Yan, Y.Y., Zu Y.Q.and Dong B., LBM, a useful tool for mesoscale modelling of single-phase and multiphase flow. Applied Thermal Engineering, 2011, 31(5): p. 649-655. https://doi.org/10.1016/j.applthermaleng.2010.10.010
Kao, P.H., Chen Y.H.and Yang R.J., Simulations of the macroscopic and mesoscopic natural convection flows within rectangular cavities. International Journal of Heat & Mass Transfer, 2008, 51(15): p. 3776-3793. https://doi.org/10.1016/j.ijheatmasstransfer.2008.01.003
Li, Q., Luo K.H., He Y.L., Gao Y.J.and Tao W.Q., Coupling lattice Boltzmann model for simulation of thermal flows on standard lattices. Physical Review E, 2012, 85(1): p. 016710-016716. https://doi.org/10.1103/physreve.85.016710
Wang, J., Wang D., Lallemand P.and Luo L.S., Lattice Boltzmann simulations of thermal convective flows in two dimensions. Computers & Mathematics with Applications, 2013, 65(2): p. 262-286. https://doi.org/10.1016/j.camwa.2012.07.001
Lallemand, P.and Luo L.S., Theory of the lattice Boltzmann method: acoustic and thermal properties in two and three dimensions. Physical Review E, 2003, 68(2): p. 036706. https://doi.org/10.1103/physreve.68.036706
Mai, H.-C., Lin K.-H., Yang C.-H.and Lin C.-A., A thermal lattice Boltzmann model for flows with viscous heat dissipation, Computer Modeling in Engineering & Sciences(CMES), 2010, 61(1): p. 45-62.
Guo, Y.L., Xu H.H., Shen S.Q.and Wei L., Nanofluid Raleigh-Benard convection in rectangular cavity: Simulation with lattice Boltzmann method. Acta Physica Sinica, 2013, 62(14): p. 1691-1702.
Guo, Z., Zheng C., Shi B.and Zhao T.S., Thermal lattice Boltzmann equation for low Mach number flows: Decoupling model. Physical Review E, Mar 2007, 75(3). https://doi.org/10.1103/physreve.75.036704
Liu, F.F., Wei, S.S., Wei, C.Z., Ren, X.F., Coupling double-distribution-function thermal lattice Boltzmann method based on the total energy type, Acta Physica Sinica, 2015, 64(15).
Kim, B.J., Lee J.H.and Kim K.D., Rayleigh–Taylor instability for thin viscous gas films: Application to critical heat flux and minimum film boiling. International Journal of Heat & Mass Transfer, Jan 2015, 80: p. 150-158. https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.084
Noghrehabadi, A., Izadpanahi E.and Ghalambaz M., Analyze of fluid flow and heat transfer of nanofluids over a stretching sheet near the extrusion slit. Computers & Fluids, Sep 1 2014, 100: p. 227-236. https://doi.org/10.1016/j.compfluid.2014.05.013
Kanna, P.R., Taler J., Anbumalar V., Kumar A.V.S., Pushparaj A.and Christopher D.S., Conjugate Heat Transfer from Sudden Expansion Using Nanofluid, Numerical Heat Transfer Part a-Applications, Jan 2 2015, 67(1): p. 75-99. https://doi.org/10.1080/10407782.2014.915685
Published
How to Cite
Issue
Section
Copyright (c) 2018 X Ren, F Liu, S Wang, S Wei

This work is licensed under a Creative Commons Attribution 4.0 International License.