Structural, Electronic and Magnetic Properties of Silicene Substituted with Monomers and Dimers of Cr, Fe and Co

Authors

  • M DavoodianIdalik
  • A Kordbacheh

DOI:

https://doi.org/10.21152/1750-9548.12.3.221

Abstract

Extensive full-potential density functional theory calculations were performed to investigate the structural, electronic and magnetic properties of silicene substituted with monomers and dimers of Cr, Fe and Co atoms. Different concentrations of monomers between 1 and 12 percent were considered. The structures substituted with all concentrations of Fe were metal and showed magnetic properties. The structures substituted with Co and Cr were half-metal or metal and, surprisingly, silicene substituted with 1.4 percent Co did not show a magnetic moment. Homonuclear and heteronuclear dimers of the above atoms were investigated for two different substitution positions in silicene. The structures showed metallic or half-metallic properties and a range of magnetic moments from 0 to 6 . This variety of electronic and magnetic properties suggest that metal-substituted silicene materials could play essential roles in nano-electronic devices in fields such as spintronics.

References

Samir Abdelouahed, A. Ernst, J. Henk, I. V. Maznichenko, and I. Mertig. 2010. Spin-split electronic states in graphene: Effects due to lattice deformation, Rashba effect, and adatoms by first principles. Phys. Rev. B 82, 12 (September 2010), 125424. https://doi.org/10.1103/physrevb.82.125424

Bernard Aufray, Abdelkader Kara, Sébastien Vizzini, Hamid Oughaddou, Christel Léandri, Benedicte Ealet, and Guy Le Lay. 2010. Graphene-like silicon nanoribbons on Ag(110): A possible formation of silicene. Appl. Phys. Lett. 96, 18 (May 2010), 183102. https://doi.org/10.1063/1.3419932

P Blaha, K Schwarz, and GKH Madsen. 2001. WIEN2K, An Augmented Plane Wave+ Local Orbitals Program for Calculating Crystal Properties (TU Wien, Austria, 2001). ISBN 3-9501031-1-2 (2001), 2001.

S Cahangirov, M Topsakal, E. Aktürk, H. Şahin, and S Ciraci. 2009. Two- and One-Dimensional Honeycomb Structures of Silicon and Germanium. Phys. Rev. Lett. 102, 23 (June 2009), 236804. https://doi.org/10.1103/physrevlett.102.236804

Chao Cao, Min Wu, Jianzhong Jiang, and Hai-Ping Cheng. 2010. Transition metal adatom and dimer adsorbed on graphene: Induced magnetization and electronic structures. Phys. Rev. B 81, 20 (2010), 205424. https://doi.org/10.1103/physrevb.81.205424

Guohua Cao, Yun Zhang, and Juexian Cao. 2015. Strain and chemical function decoration induced quantum spin Hall effect in 2D silicene and Sn film. Phys. Lett. Sect. A Gen. At. Solid State Phys. 379, 22–23 (2015), 1475–1479. https://doi.org/10.1016/j.physleta.2015.03.021

Son-Hsien Chen. 2016. Electrically tunable spin polarization in silicene: A multi-terminal spin density matrix approach. J. Magn. Magn. Mater. 405, (May 2016), 317–323. https://doi.org/10.1016/j.jmmm.2015.12.088

Suman Chowdhury and Debnarayan Jana. 2016. A theoretical review on electronic, magnetic and optical properties of silicene. Reports Prog. Phys. 79, 12 (December 2016), 126501. https://doi.org/10.1088/0034-4885/79/12/126501

Ning Ding, Huan Wang, Xiangfeng Chen, and Chi-Man Lawrence Wu. 2017. Defect-sensitive performance of silicene sheets under uniaxial tension: mechanical properties, electronic structures and failure behavior. RSC Adv. 7, 17 (2017), 10306–10315. https://doi.org/10.1039/c6ra27291f

N. D. Drummond, V. Zólyomi, and V. I. Fal’ko. 2012. Electrically tunable band gap in silicene. Phys. Rev. B 85, 7 (February 2012), 075423. https://doi.org/10.1103/physrevb.85.075423

Hanna Enriquez, Sébastien Vizzini, Abdelkader Kara, Boubekeur Lalmi, and Hamid Oughaddou. 2012. Silicene structures on silver surfaces. J. Phys. Condens. Matter 24, 31 (August 2012), 314211. https://doi.org/10.1088/0953-8984/24/31/314211

Motohiko Ezawa. 2012. Valley-polarized metals and quantum anomalous hall effect in silicene. Phys. Rev. Lett. 109, 05 (2012), 055502. https://doi.org/10.1103/physrevlett.109.055502

Motohiko Ezawa. 2012. A topological insulator and helical zero mode in silicene under an inhomogeneous electric field. New J. Phys. 14, 3 (March 2012), 033003. https://doi.org/10.1088/1367-2630/14/3/033003

Rouhollah Farghadan. 2017. Bipolar magnetic semiconductor in silicene nanoribbons. J. Magn. Magn. Mater. 435, (2017), 206–211. https://doi.org/10.1016/j.jmmm.2017.04.016

Baojie Feng, Zijing Ding, Sheng Meng, Yugui Yao, Xiaoyue He, Peng Cheng, Lan Chen, and Kehui Wu. 2012. Evidence of silicene in honeycomb structures of silicon on Ag(111). Nano Lett. 12, 7 (July 2012), 3507–11. https://doi.org/10.1021/nl301047g

Joelson C. Garcia, Denille B. de Lima, Lucy V. C. Assali, and João F. Justo. 2011. Group IV Graphene- and Graphane-Like Nanosheets. J. Phys. Chem. C 115, 27 (July 2011), 13242–13246. https://doi.org/10.1021/jp203657w

M. Gmitra, S. Konschuh, C. Ertler, C. Ambrosch-Draxl, and J. Fabian. 2009. Band-structure topologies of graphene: Spin-orbit coupling effects from first principles. Phys. Rev. B 80, 23 (December 2009), 235431. https://doi.org/10.1103/physrevb.80.235431

Xi-Xi Guo, Ping Guo, Ji-Ming Zheng, Li-Ke Cao, and Pu-Ju Zhao. 2015. First-principles calculations study of Na adsorbed on silicene. Appl. Surf. Sci. 341, (June 2015), 69–74. https://doi.org/10.1016/j.apsusc.2015.03.002

Zhi-Xin Guo, Shinnosuke Furuya, Jun-ichi Iwata, and Atsushi Oshiyama. 2013. Absence and presence of Dirac electrons in silicene on substrates. Phys. Rev. B 87, 23 (June 2013), 235435. Crossref DOI:https://doi.org/10.1103/PhysRevB.87.235435. https://doi.org/10.1103/physrevb.87.235435

M. Houssa, E. Scalise, K. Sankaran, G. Pourtois, V. V. Afanas’ev, and A. Stesmans. 2011. Electronic properties of hydrogenated silicene and germanene. Appl. Phys. Lett. 98, 22 (May 2011), 223107. https://doi.org/10.1063/1.3595682

Tian-Tian Jia, Xin-Yu Fan, Meng-Meng Zheng, and Gang Chen. 2016. Silicene nanomeshes: bandgap opening by bond symmetry breaking and uniaxial strain. Sci. Rep. 6, 1 (August 2016), 20971. https://doi.org/10.1038/srep20971

Harman Johll, Michael Dao Kang Lee, Sean Peng Nam Ng, Hway Chuan Kang, and Eng Soon Tok. 2014. Influence of Interconfigurational Electronic States on Fe, Co, Ni-Silicene Materials Selection for Spintronics. Sci. Rep. 4, (2014), 7594. https://doi.org/10.1038/srep07594

Harman Johll, Jiang Wu, Sheau Wei Ong, Hway Chuan Kang, and Eng Soon Tok. 2011. Graphene-adsorbed Fe, Co, and Ni trimers and tetramers: Structure, stability, and magnetic moment. Phys. Rev. B 83, 20 (May 2011), 205408. https://doi.org/10.1103/physrevb.83.205408

T. P. Kaloni, N. Singh, and U. Schwingenschlögl. 2014. Prediction of a quantum anomalous Hall state in Co-decorated silicene. Phys. Rev. B 89, 3 (January 2014), 035409. https://doi.org/10.1103/physrevb.89.035409

Jun Kang, Hui-Xiong Deng, Shu-Shen Li, and Jingbo Li. 2011. First-principles study of magnetic properties in Mo-doped graphene. J. Phys. Condens. Matter 23, 34 (August 2011), 346001. https://doi.org/10.1088/0953-8984/23/34/346001

Abdelkader Kara, Hanna Enriquez, Ari P. Seitsonen, L.C. Lew Yan Voon, Sébastien Vizzini, Bernard Aufray, and Hamid Oughaddou. 2012. A review on silicene — New candidate for electronics. Surf. Sci. Rep. 67, 1 (January 2012), 1–18. https://doi.org/10.1016/j.surfrep.2011.10.001

A. Krasheninnikov, P. Lehtinen, A. Foster, P. Pyykkö, and R. Nieminen. 2009. Embedding Transition-Metal Atoms in Graphene: Structure, Bonding, and Magnetism. Phys. Rev. Lett. 102, 12 (March 2009), 126807. https://doi.org/10.1103/physrevlett.102.126807

Boubekeur Lalmi, Hamid Oughaddou, Hanna Enriquez, Abdelkader Kara, Sébastien Vizzini, Bénidicte Ealet, and Bernard Aufray. 2010. Epitaxial growth of a silicene sheet. Appl. Phys. Lett. 97, 22 (November 2010), 223109. https://doi.org/10.1063/1.3524215

Mu Lan, Gang Xiang, Chenhui Zhang, and Xi Zhang. 2013. Vacancy dependent structural, electronic, and magnetic properties of zigzag silicene nanoribbons:Co. J. Appl. Phys. 114, 16 (2013), 163711. https://doi.org/10.1063/1.4828482

L. C. Lew Yan Voon, E. Sandberg, R. S. Aga, and a. a. Farajian. 2010. Hydrogen compounds of group-IV nanosheets. Appl. Phys. Lett. 97, 16 (2010), 163114. https://doi.org/10.1063/1.3495786

Chao Lian and Jun Ni. 2013. Strain induced phase transitions in silicene bilayers: a first principles and tight-binding study. AIP Adv. 3, 5 (May 2013), 052102. https://doi.org/10.1063/1.4804246

Xianqing Lin and Jun Ni. 2012. Much stronger binding of metal adatoms to silicene than to graphene: A first-principles study. Phys. Rev. B 86, 7 (August 2012), 075440. https://doi.org/10.1103/physrevb.86.075440

Cheng-Cheng Liu, Wanxiang Feng, and Yugui Yao. 2011. Quantum Spin Hall Effect in Silicene and Two-Dimensional Germanium. Phys. Rev. Lett. 107, 7 (August 2011), 076802. https://doi.org/10.1103/physrevlett.107.076802

Cheng-Cheng Liu, Hua Jiang, and Yugui Yao. 2011. Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin. Phys. Rev. B 84, 19 (November 2011), 195430. https://doi.org/10.1103/physrevb.84.195430

Y S Liu, Y J Dong, J Zhang, H L Yu, J F Feng, and X F Yang. 2018. Multi-functional spintronic devices based on boron- or aluminum-doped silicene nanoribbons. Nanotechnology 29, 12 (2018), 125201. https://doi.org/10.1088/1361-6528/aaa999

Hang Xing Luan, Chang Wen Zhang, Fu Bao Zheng, and Pei Ji Wang. 2013. First-principles study of the electronic properties of B/N atom doped silicene nanoribbons. J. Phys. Chem. C 117, (2013), 13620–13626. https://doi.org/10.1021/jp4005357

Brij Mohan, Ashok Kumar, and P. K. Ahluwalia. 2014. Electronic and dielectric properties of silicene functionalized with monomers, dimers and trimers of B, C and N atoms. RSC Adv. 4, 60 (2014), 31700–31705. https://doi.org/10.1039/c4ra02711f

Bohayra Mortazavi, Obaidur Rahaman, Meysam Makaremi, Arezoo Dianat, Gianaurelio Cuniberti, and Timon Rabczuk. 2017. First-principles investigation of mechanical properties of silicene, germanene and stanene. Phys. E Low-dimensional Syst. Nanostructures 87, (March 2017), 228–232. https://doi.org/10.1016/j.physe.2016.10.047

Zeyuan Ni, Qihang Liu, Kechao Tang, Jiaxin Zheng, Jing Zhou, Rui Qin, Zhengxiang Gao, Dapeng Yu, and Jing Lu. 2012. Tunable Bandgap in Silicene and Germanene. Nano Lett. 12, 1 (January 2012), 113–118. https://doi.org/10.1021/nl203065e

K S Novoselov. 2004. Electric Field Effect in Atomically Thin Carbon Films. Science (80-. ). 306, 5696 (October 2004), 666–669. https://doi.org/10.1126/science.1102896

Tim H. Osborn, Amir a. Farajian, Olga V. Pupysheva, Rachel S. Aga, and L.C. Lew Yan Voon. 2011. Ab initio simulations of silicene hydrogenation. Chem. Phys. Lett. 511, 1–3 (July 2011), 101–105. https://doi.org/10.1016/j.cplett.2011.06.009

John P. Perdew, Kieron Burke, and Matthias Ernzerhof. 1996. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 18 (October 1996), 3865–3868. https://doi.org/10.1103/physrevlett.77.3865

Rui Qin, Chun-Hai Wang, Wenjun Zhu, and Yalin Zhang. 2012. First-principles calculations of mechanical and electronic properties of silicene under strain. AIP Adv. 2, 2 (2012), 022159. https://doi.org/10.1063/1.4732134

Ruge Quhe, Ruixiang Fei, Qihang Liu, Jiaxin Zheng, Hong Li, Chengyong Xu, Zeyuan Ni, Yangyang Wang, Dapeng Yu, Zhengxiang Gao, and Jing Lu. 2012. Tunable and sizable band gap in silicene by surface adsorption. Sci. Rep. 2, 853 (November 2012), 1–6. https://doi.org/10.1038/srep00853

Majeed Ur Rehman and Zhenhua Qiao. 2018. Assessment of bilayer silicene to probe as quantum spin and valley Hall effect. Eur. Phys. J. B 91, 2 (February 2018), 42. https://doi.org/10.1140/epjb/e2017-80291-4

H. Şahin, S. Cahangirov, M. Topsakal, E. Bekaroglu, E. Akturk, R. Senger, and S. Ciraci. 2009. Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations. Phys. Rev. B 80, 15 (October 2009), 155453. https://doi.org/10.1103/physrevb.80.155453

H. Sahin and F. M. Peeters. 2013. Adsorption of alkali, alkaline-earth, and 3 d transition metal atoms on silicene. Phys. Rev. B 87, 8 (February 2013), 085423. https://doi.org/10.1103/physrevb.87.085423

E. J.G. Santos, D. Sánchez-Portal, and A Ayuela. 2010. Magnetism of substitutional Co impurities in graphene: Realization of single π vacancies. Phys. Rev. B 81, 12 (March 2010), 125433. https://doi.org/10.1103/physrevb.81.125433

Ejg J G Santos, A Ayuela, and D Sánchez-Portal. 2010. First-principles study of substitutional metal impurities in graphene: structural, electronic and magnetic properties. New J. Phys. 12, 5 (2010), 053012. https://doi.org/10.1088/1367-2630/12/5/053012

Elton J. G. Santos, a. Ayuela, and D. Sánchez-Portal. 2012. Strain-Tunable Spin Moment in Ni-Doped Graphene. J. Phys. Chem. C 116, 1 (January 2012), 1174–1178. https://doi.org/10.1021/jp2077374

J. Sivek, H. Sahin, B. Partoens, and F. M. Peeters. 2013. Adsorption and absorption of boron, nitrogen, aluminum, and phosphorus on silicene: Stability and electronic and phonon properties. Phys. Rev. B 87, 8 (February 2013), 085444. https://doi.org/10.1103/physrevb.87.085444

Li Tao, Eugenio Cinquanta, Daniele Chiappe, Carlo Grazianetti, Marco Fanciulli, Madan Dubey, Alessandro Molle, and Deji Akinwande. 2015. Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 10, 3 (February 2015), 227–231. https://doi.org/10.1038/nnano.2014.325

Nan Wang, Hao Guo, Yue-jie Liu, Jing-xiang Zhao, Qing-hai Cai, and Xuan-zhang Wang. 2015. Asymmetric functionalization as a promising route to open the band gap of silicene: A theoretical prediction. Phys. E Low-dimensional Syst. Nanostructures 73, (September 2015), 21–26. https://doi.org/10.1016/j.physe.2015.05.014

Rong Wang, Ming-Sheng Xu, and Xiao-Dong Pi. 2015. Chemical modification of silicene. Chinese Phys. B 24, 8 (2015), 086807. https://doi.org/10.1088/1674-1056/24/8/086807

M Wu, C Cao, and J Z Jiang. 2010. Electronic structure of substitutionally Mn-doped graphene. New J. Phys. 12, 6 (June 2010), 063020. https://doi.org/10.1088/1367-2630/12/6/063020

Yafang Xu, Xingfei Zhou, and Guojun Jin. 2016. Detecting topological phases in silicene by anomalous Nernst effect. Appl. Phys. Lett. 108, 20 (May 2016), 203104. https://doi.org/10.1063/1.4950854

Susumu Yanagisawa, Takao Tsuneda, and Kimihiko Hirao. 2000. An investigation of density functionals: The first-row transition metal dimer calculations. J. Chem. Phys. 112, 2 (2000), 545. https://doi.org/10.1063/1.480546

Xuechao Zhai and Guojun Jin. 2016. Completely independent electrical control of spin and valley in a silicene field effect transistor. J. Phys. Condens. Matter 28, 35 (2016), 355002. https://doi.org/10.1088/0953-8984/28/35/355002

P. Zhang, X.D. Li, C.H. Hu, S.Q. Wu, and Z.Z. Zhu. 2012. First-principles studies of the hydrogenation effects in silicene sheets. Phys. Lett. A 376, 14 (March 2012), 1230–1233. https://doi.org/10.1016/j.physleta.2012.02.030

Xiaojiao Zhang, Dan Zhang, Fang Xie, Xialian Zheng, Haiyan Wang, and Mengqiu Long. 2017. First-principles study on the magnetic and electronic properties of Al or P doped armchair silicene nanoribbons. Phys. Lett. A 381, 25–26 (2017), 2097–2102. https://doi.org/10.1016/j.physleta.2017.04.030

Fu-bao Zheng, Chang-wen Zhang, Shi-shen Yan, and Feng Li. 2013. Novel electronic and magnetic properties in N or B doped silicene nanoribbons. J. Mater. Chem. C 1, 15 (2013), 2735.

Rui Zheng, Ying Chen, and Jun Ni. 2015. Highly tunable magnetism in silicene doped with Cr and Fe atoms under isotropic and uniaxial tensile strain. Appl. Phys. Lett. 107, 26 (2015). https://doi.org/10.1063/1.4938755

Rui Zheng, Xianqing Lin, and Jun Ni. 2014. The extraordinary magnetoelectric response in silicene doped with Fe and Cr atoms. Appl. Phys. Lett. 105, 9 (2014), 092410. https://doi.org/10.1063/1.4895036

Published

2018-09-30

How to Cite

DavoodianIdalik, M. and Kordbacheh, A. (2018) “Structural, Electronic and Magnetic Properties of Silicene Substituted with Monomers and Dimers of Cr, Fe and Co”, The International Journal of Multiphysics, 12(3), pp. 221-238. doi: 10.21152/1750-9548.12.3.221.

Issue

Section

Articles