FTMP-based Kink Deformation and Strengthening Mechanisms for Mille-feuille Structures


  • Y Nawa
  • T Hasebe




This study aims at reproducing deformation-induced kink morphologies, together with the recently-reported AE measurement-based energy releasing characteristics, based on FTMP (Field Theory of Multiscale Plasticity)-incorporated crystal plasticity finite element simulation for single crystal Mg under c-axis plane strain compression condition. Two models either with the well-defined deformation twin system or a rank-1 connection-based kink system are considered, respectively, as the projection direction for the incompatibility tensor to be used in the constitutive model. The twin model yields “kink-like morphology” of growing kind, but fails to capture one of the energy releasing characteristics. The kink model, on the other hand, is demonstrated to be able to reproduce basically all the features, i.e., not only the “kink” morphology but also the AE energy-based features. 


Kawamura, Y., Hayashi, K., Inoue, A. and Masumoto, T., Rapidly Solidified Powder Metallurgy Mg97Zn1Y2Alloys with Excellent Tensile Yield Strength above 600 MPa, Mater. Trans., 2001. 42: p. 1172-1176. DOI: https://doi.org/10.2320/matertrans.42.1172

Yamasaki, M., Hashimoto, K., Hagihara, K. and Kawamura, Y., Effect of multimodal microstructure evolution on mechanical properties of Mg–Zn–Y extruded alloy, Acta Mater., 2011. 59: p. 3646-3658. DOI: https://doi.org/10.1016/j.actamat.2011.02.038

Hagihara, K., Yokotani, N. and Umakoshi, Y., Plastic deformation behavior of Mg12YZn with 18R long-period stacking ordered structure, Intermetallics., 2010. 18: p. 267-276. DOI: https://doi.org/10.1016/j.intermet.2009.07.014

Abe, E., Ono, A., Itoi, T., Yamasaki, M. and Kawamura, Y., Polytypes of long-period stacking structures synchronized with chemical order in a dilute Mg–Zn–Y alloy, Philos. Mag. Lett., 2011. 91: p. 690-696. DOI: https://doi.org/10.1080/09500839.2011.609149

Hagihara, K., Private Communication, 2018.

Aizawa, K., Private Communication, 2018.

Hasebe, T., Sugiyma, M., Adachi, H., Fukutani, S. and Iida, M., Modeling and Simulations of Experimentally-Observed Dislocation Substructures Based on Field Theory of Multiscale Plasticity (FTMP) Combined with TEM and EBSD-Wilkinson Method for FCC and BCC Poly/Single Crystals, Mater. Trans., 2014. 55(5): p. 779-787. DOI: https://doi.org/10.2320/matertrans.M2013226

Hasebe, T., Kumai, S. and Imaida, Y., Impact compression behavior of FCC metals with pre-torsion strains, Jnl. Maters. Process. Technol., 1999. 85: p. 184-187. DOI: https://doi.org/10.1016/S0924-0136(98)00288-X

Hasebe, T. and Imaida, Y., Construction of Quantum Field Theory of Dislocations based on the Non-Riemannian Plasticity, Acta Metall. Sin., 1998. 11(6): p. 405­411.

Hasebe, T., Continuum Description of Inhomogeniousely Deforming Polycrystalline Aggregate based on Field Theory, IUTAM Symposium on Mesoscopic Dynamics of Fracture Process and Materials Strength. Eds. H. Kitagawa and Y. Shibutani, Kluwer Academic Publishers, 2004: p. 381-390. DOI: https://doi.org/10.1007/978-1-4020-2111-4_36

Hasebe, T., Field Theoretical Multiscale Modeling of Polycrystal Plasticity, Trans. MRS-J, 2004. 29: p. 3619­3624.

Hasebe, T., Multiscale Crystal Plasticity Modeling based on Field Theory, Comp. Mech. Eng. Sci. (CMES), 2006. 11: p. 145­155. DOI: https://doi.org/10.3970/cmes.2006.011.145

Aoyagi, Y. and Hasebe, T., New Physical Interpretation of Incompatibility Tensor and Its Application to Dislocation Substructure Evolution, Key Materials Engineering, 2007. 340(341): p. 217-222. DOI: https://doi.org/10.4028/www.scientific.net/KEM.340-341.217

Yamada, M., Hasebe, T., Tomita, Y., Onizawa, T., Reproducing Kernel Based Evaluation of Incompatibility Tensor in Field Theory of Plasticity, IMMIJ (Interaction and Multiscale Mechanics: An Int. J.), 2008. 1(4): p.437-448. DOI: https://doi.org/10.12989/imm.2008.1.4.437

Hasebe, T., Interaction Fields Based on Incompatibility Tensor in Field Theory of Plasticity-Part I: Theory-, IMMIJ (Interaction and Multiscale Mechanics: An Int. J.), 2009. 2(1): p. 1-14. DOI: https://doi.org/ 10.12989/imm.2009.2.1.001

Hasebe, T., Interaction Fields Based on Incompatibility Tensor in Field Theory of Plasticity -Part II: Application-, IMMIJ (Interaction and Multiscale Mechanics: An Int. J.), 2009. 2(1): p. 15-30. DOI: https://doi.org/10.12989/imm.2009.2.1.015

Fukutani, S. and Hasebe, T., Extended FTMP to Finslerian Space and Its Application to Modeling and Simulation of Soft Active Materials, Proc. 25th CMD (CMD2012), JSME, 2012: p. 394-395. DOI: https://doi.org/10.1299/jsmecmd.2012.25.394

Okuda, T., Imiya, K. and Hasebe, T., FTMP-based Simulation of Twin Nucleation and Substructure Evolution under Hypervelocity Impact, Int. J. Comput. Maters. Sci. Eng., 2013. 2(3&4): p. 1350021. DOI: https://doi.org/10.1142/S2047684113500218

Kajiwara, N., Imiya, K. and Hasebe, T., FTMP-based Modeling and Simulation of Magnesium, Int. J. Comput. Maters. Sci. Eng., 2013. 2(3&4): p. 1350022. DOI: https://doi.org/10.1142/S204768411350022X

Hasebe, T. and Naito, T., FTMP-based 4D Evaluations of Discrete Dislocation Systems, New Frontiers of Nanometals, Eds. S. Faester, et al. (Proc. 35th RisØ int. Symp. on Maters. Sci.), 2014: p. 305-312. DOI: https://doi.org/10.13140/2.1.4287.9368

Ihara, S. and Hasebe, T., FTMP-based simulations and evaluations of Geometrically-Necessary Boundaries (GNBs) of dislocation, Int. Jnl. of Multiphysics, 2019. 13(3): p. 253-268. DOI: https://doi.org/10.21152/1750-9548.13.3.253

Matsubara, Y. and Hasebe, T., Multiscale Modeling and Simulations of Creep Rupture Process of Lath Martensite Block/Packet Structures for High Cr Steels based on FTMP, Proc. 10th Japan-China Bilateral Symp. High Temp. Strength of Maters., 2019: p. 311-316.

Kondo, K., Non-Riemannian Geometry of Imperfect Crystals from a Macroscopic Viewpoint, RRAG Memoirs, 1955. 1(D-I): p. 458-469. (RAAG Memoirs of Unifying Study of Basic Problems in Engineering and Physical Science by Means of Geometry (ed: Kondo. K.), Gakujutsu Bunken Fukyu-kai, Tokyo).

Amari, S., A Theory of Deformations and Stresses of Ferromagnetic Substances by Finsler Geometry, RAAG Memoirs, 1962. 3: p. 257-278.

Eshelby, J.D., The force on an elastic singularity, Phil. Trans. Roy. Soc. London SeriesA, 1951. 244(877): p. 87-112. DOI: https://doi.org/10.1098/rsta.1951.0016

Mura, T., Micromechanics of Defects in Solids, 1987: Martinus Nijhoff Publ.

Kadic, A. and Edelen, D.G.B., Lecture Notes in Phys.174, 1983: Springer.

McDavid, A.W. and McMullen, C.D., Generalizing Cross Products and Maxwell's Equations to Universal Extra Dimensions, 2006: http://arxiv.org/abs/hep-ph/0609260.

Khan, A. and Huang, S., Continuum Theory of Plasticity, 1995: Wiley.

Nemat-Nassar, S., Plasticity: A Treatise on Finite De-formation of Heterogeneous Inelastic Materials, 2004: Cambridge Univ. Press.

Asaro, R. J., Micromechanics of Crystals and Polycrystals, Adv. Appl. Mech., 1983. 23: p. 1-115. DOI: https://doi.org/10.1016/S0065-2156(08)70242-4

Fleck, N.A., Muller, G.M., Ashby, M.F. and Hutchinson, J.W., Strain gradient plasticity: Theory and experiment, Acta Metall, Mater., 1994. 42(2): p. 475-487. DOI: https://doi.org/10.1016/0956-7151(94)90502-9

Zbib, H.M. and Aifantis, E.C., On the localization and postlocalization behavior of plastic deformation, Res. Mech., 1988. 23: p. 261-305.

Lee, E.H., Elastic-Plastic Deformation at Finite Strains, J. Appl. Mech., 1969. 36(1): p. 1-6. DOI: https://doi.org/10.1115/1.3564580

Bassani, J.L. and Wu, T., Latent hardening in single crystals, part II, Analytical characterization and predictions, Proc. R. Soc. A, 1991. 435(1893): p. 21-41. DOI: https://doi.org/10.1098/rspa.1991.0128

Kushima, H., Kimura, K. and Abe, F, Degradation of Mod. 9Cr-1 Mo Steel during Long-term Creep Defornation, Tetsu to Hagane, 1999. 85(11): p. 841-847. DOI: https://doi.org/10.2355/tetsutohagane1955.85.11_841

Maruyama, K., Sawada, K. and Koike, J., Strengthening Mechanisms of Creep Resistant Tempered Martensitic Steel, ISIJ International, 2001. 41(6): p. 641-653. DOI: https://doi.org/10.2355/isijinternational.41.641

Kelley, E.W., and Hosford, W.F., Plane-Strain Compression of Magnesium and Magnesium Alloy Crystals, Trans. Metall. Soc. AIME., 1968. 242: p. 5–13.

Inamura, T., Geometry of kink microstructure analysed by rank-1 connection, Acta Mater., 2019. 173: p. 270-280. DOI: https://doi.org/10.1016/j.actamat.2019.05.023



How to Cite

Nawa, Y. and Hasebe, T. (2021) “FTMP-based Kink Deformation and Strengthening Mechanisms for Mille-feuille Structures”, The International Journal of Multiphysics, 15(3), pp. 325-348. doi: 10.21152/1750-9548.15.3.325.