Numerical analyses of a PEM fuel cell’s performance having a perforated type gas flow distributor


  • M Virk
  • M Mustafa
  • A Holdø



This paper presents the steady state, isothermal, three dimensional (3D) numerical analyses of an intermediate temperature, proton electrolyte membrane (PEM) fuel cell’s performance with the perforated type gas flow channels. Finite element based numerical technique is used to solve this multi transport numerical model coupled with the flow in porous medium, charge balance, electrochemical kinetics and membrane water content. Numerical analyses provided a detailed insight of the various physical phenomena, affecting this type of PEM fuel cell’s performance. Results obtained from numerical analyses are compared with the experimental data and a good agreement is found. To validate this new design concept a comparison study is also carried out with the conventional PEM fuel cell having a serpentine type gas distributor. Results showed a better distribution of reactant species in the case of the perforated type gas distributor.


Fernga, Y. M., A. Su, and S. M. Lu, Experiment and Simulation investigations for effect of flow channel patterens on PEMFC Paerfromance.International Journel of Energy Research, 2008. 32: p. 12-23.

YING and M. Ouyang, Three Dimensional Heat and Mass Transfer analysis in an air-breathing Proton Exchange Membrane Fuel Cell.jounal of Power source, 2007. 164: p. 721-729.

MARS, A. and A. HAKS, Parametric and optimization study of a PEM fuel cell performance using three-dimensional computational fluid dynamics model.Renew Energy, 2007. 32: p. 1077-1101.

Hontanon, M. J. Escudero, and C. Bautista, Optimisation of flow-field in polymer electrolyte membrane fuel cells using computational fluid dynamics techniques.Journal of Power Sources, 2000. 86: p. 363-68.

Chu, H. S., F. Tsau, and Y. Y. Yan, The development of a small PEMFC combined heat and power system.journal of power sources, 2008. 176(2): p. 499-514.

Wang, C.-Y., Fundamental Models of Fuel cell Engineering.Chem Rev, 2004. 104: p. 4727-4766.

Ren, G. P. and L. J. Y. Qin, Transport Mechanisims and Performance Simulation of PEM Fuel Cell.International Journal of Energy Research, 2008. 32: p. 514-530.

Djilalib, N. and B. R. Sivertsena, Computational modelling of polymer electrolyte membrane (PEM) fuel cells: Challenges and opportunities.Energy, 2007. 32: p. 269-280.

Carcadea, E., H. Ene, and Ingham, A Computational Fluid Dynamics Analysis of a PEM Fuel Cell System for Power generation.International Journal of Numerical Methods for Heat and Fluid Flow, 2007. 17(3): p. 302-312.

Bernardi, D. M. and M. W. Vebrunge, A mathematical model of the solidpolymer electrolyte fuel cell.Journal of Electrochemical Society, 1992. 139(9): p. 2477-2491.

Springer, T. E., T. A. Zawodzinski, and S. Gottesfeld, Polymer electrolyte fuel cell model.J. Electrochem. Soc., 1991. 138(8): p. 2334-2342.

Fuller, T. F. and J. Newman, Water and thermal management in solid-polymer electrolyte fuel cells,.Journal of Electrochemical Society, 1993. 150(5): p. 1218-1225.

Nguyen, T. V. and R. E. White, A Water and Heat Management Model for Proton-Exchange-Membrane Fuel Cells,". Journal of the Electrochemical Society, 1993. 140: p. 2178-2186.

Shawn Edward Litster, Mathematical Modelling of Fuel Cells for Portable Devices, in Department of Mechanical Engineering. 2004, University of Victoria,. p. 156.

Baschuk, J. J. and X. Li, Modeling of polymer electrolyte membrane fuel cells with variable degrees of water flooding.Journal of Power Sources, 2000. 86: p. 181-196.

Gurau, V., H. Liu, and S. Kakac, Two-dimensional model for proton exchange membrane fuel cells.AIChE J, 1998. 44(11): p. 2410-2422.

Wang, Z., W. CY, and C. KS, Two phase flow and transport in the air cathode of proton exchange membrane fuel cells.jounal of Power source, 2002. 94: p. 40-50.

Ferng, Y., Analytical and experimental investigations of a Proton Exchange Membrane fuel cell.International Journal of Hydrogen Energy, 2004. 29: p. 381-391.

Wang and K. S. Chen, Computational fluid dynamics modeling of proton exchange membrane fuel cells,.J. Electrochem. Soc., 2000. 147(12): p. 4485-4493.

Shimpalee and S. Dutta, Effect of Humidity on PEM Fuel Cell Performance. Part II. Numerical Simulation,.Heat Transfer Divison, ASME, 1999. 364-1.

Watkins, D. S., Novel fuel cell Fluid flow field plate. US Patent 4988583, 1991.

Chen, F., M. H. Chang, and C. F. Fang, Analysis of Water Transport in a Five Layer Model of PEMFC.jounal of Power source, 2007. 164: p. 649-658.

Nguyen, B. T, and D. N, Computational model of a PEM fuel cell with serpentine gas flow channels.J Power Sources, 2004. 130: p. 149-57.

Meng, H., A Three Dimensional Mixed Domain PEM Fuel Cell model with fully Coupled Transport Phenomena.jounal of Power source, 2007. 164: p. 688-696.

Djillali, N. and T. Bearing, Three dimensional computational analyses of transport phenomena in PEM fuel cell-a parametric study.jounal of Power source, 2003. 124: p. 440-452.

Motupally, S., A. J. Becker, and J. W. Weidner, Diffusion of water in Nafion 115 membranes,.J. Electrochem. Soc., 2000. 147(9): p. 3171.

Guvelioglu, G. H. and H. G. Stenger, Computational fluid dynamics modeling of polymer electrolyte membrane fuel cells.Journal of Power Sources, 2005. 147: p. 95-106.



How to Cite

Virk, M., Mustafa, M. and Holdø, A. (2009) “Numerical analyses of a PEM fuel cell’s performance having a perforated type gas flow distributor”, The International Journal of Multiphysics, 3(4), pp. 347-360. doi: 10.1260/1750-9548.3.4.347.




Most read articles by the same author(s)

1 2 > >>