Numerical evaluation of multipass welding temperature field in API 5L X80 steel welded joints

Authors

  • J Nobrega
  • D Silva
  • B Araujo
  • R Melo
  • T Maciel
  • A Silva
  • N Santos

DOI:

https://doi.org/10.1260/1750-9548.8.3.337

Abstract

Many are the metallurgical changes suffered by materials when subjected to welding thermal cycle, promoting a considerable influence on the welded structures thermo mechanical properties. In project phase, one alternative for evaluating the welding cycle variable, would be the employment of computational methods through simulation. So, this paper presents an evaluation of the temperature field in a multipass welding of API 5L X80 steel used for oil and gas transportation, using the ABAQUS ® software, based on Finite Elements Method (FEM). During the simulation complex phenomena are considerable including: Variation in physical and mechanical properties of materials as a function of temperature, welding speed and the different mechanisms of heat exchange with the environment (convection and radiation) were used. These considerations allow a more robust mathematical modeling for the welding process. An analytical heat source proposed by Goldak, to model the heat input in order to characterize the multipass welding through the GTAW (Gas Tungsten Arc Welding) process on root and the SMAW (Shielded Metal Arc Welding) process for the filling passes were used. So, it was possible to evaluate the effect of each welding pass on the welded joint temperature field, through the temperature peaks and cooling rates values during the welding process.

References

Monteiro, L. S., 2004, Estudo de Ciclos Térmicos de Juntas Soldadas em um Aço de Alta Resistěncia e Baixa Liga Através do metodo " In situ" Dissertação de Mestrado em Engenharia Mecânica, Universidade Federal de Campinas. Campinas, SP. https://doi.org/10.26678/abcm.conem2018.con18-0662

Almeida, D. F. F., 2012. Determinação das Tensões Residuais e Deformações Resultantes do Processo de Soldadura TIG Através do Método dos Elementos Finitos, Dissertação de mestrado em Engenharia Mecânica - Faculdade de Ciěncias e Tecnologia, Universidade de Lisboa, Lisboa. https://doi.org/10.14393/ufu.di.1996.12

Bezerra, A. C., 2004. Análise Térmica do Processo de Soldagem TIG via Elementos Finitos, in Simpósio do Programa de Pós Graduação em Engenharia Mecânica - Faculdade de Engenharia Mecânica, Universidade Federal de Uberlândia, Uberlândia-MG. https://doi.org/10.18605/2175-7275/cereus.v10n2p224-239

Queresh, E, M.; Analysis of Residual Stresses and Distortions in Circumferentially Welded Thin-Walled Cylinders. Thesis (Doctorate in Machanical Engineering) - National University of sciences and Technology, Rawalpindi, Pakistan, 2008.

Guimarães, P. B. Et al.; Obtaining Temperature Fields as a Function of Efficiency in TIG Welding by Numerical Modeling. Thermal Engineering, v. 10, p. 50-54, 2011.

American Petroleum Institute. API 5 L: Specification for Line Pipe. Washington, 42nd ed. January 2000, 153 p.

Cooper Ordóñez, R. E; Soldagem e Caracterização das Propriedades Mecânicas de Dutos de Aço API 5L-X80 com Diferentes Arames Tubulares. Dissertação de Mestrado - Campinas, Faculdade de Engenharia Mecânica, Universidade Estadual de Campinas, 2004. https://doi.org/10.20396/revpibic2720191603

Cooper Ordóñez, R. E.; Silva, J. H. F.; Trevisan, R. E. Estudo do comportamento da micro e macrodureza de juntas de aço API X80 soldadas com arame tubular. In: III Congresso Nacional de Engenharia Mecânica - CONEM, 2004, Belém, PA. III Congresso Nacional de Engenharia Mecânica - CONEM, 2004, 2004. https://doi.org/10.26678/abcm.conem2018.con18-0754

N-133J - Soldagem, revisão setembro 2002, pp 28-29.

Araújo, B. A, et al.; Evaluation of the diffusivity and susceptibility to hydrogen ambrittlement of API 5L X80 stell welded joints. Int. Jnl. Of Multiphysics, Vol. 7(3), 2013, 182-195.

KOU, S. Welding metallurgy, 2nd Ed., John Wiley & Sons, 2003.

Jiang, W. G.; The Development and Applications of the Helically Symmetric Boundary Conditions in Finite Elements Analysis, Communications in Numerical Methods in Engineering. V. 15, p.435-443, (1999). https://doi.org/10.1002/(sici)1099-0887(199906/07)15:6<435::aid-cnm257>3.0.co;2-w

Nóbrega J. A.; et al.; Simulação Numérica do Campo de Temperaturas de Juntas Soldadas do aço API 5L X80, Através do Método de Elementos Finitos, In: XXXIV Iberian Latin-American Congress on Computational Methods in Engineering, Pirenópolis - GO, Brasil, 2013. https://doi.org/10.11606/d.3.2016.tde-23082016-080924

Deng, D.; FEM prediction of welding residual stress and distortion in carbon steel considering phase transformation effects, Materials and Design, v. p 359-366, 2009. https://doi.org/10.1016/j.matdes.2008.04.052

Srivastava, B.K; Tewari, S. P.; Prakash, J.; A review on effect of preheating and/or post weld heat treatment (PWHT) on mechanical behavior of ferrous metals - International Journal of Engineering Science and Technology, v. 2, p 625-631, 2010.

Hinton R. W.; Wiswesser R.W; Estimating Welding Preheat Requerements for Uknown Grades of Carbon and Low-Allow Steels, Supplement to the Welding Journal, V. p.78, 2008, 273-278.

Miller, Guidelines for Gas Tungsten Arc Welding (GTAW). available in: http://www.millerwelds.com/pdf/gtawbook.pdf

Sobrinho, R. J. F., Alcântara, N. G., 2007. Análise dos Ciclos Térmicos Obtidos na Zona Afetada Termicamente da Junta Soldada de um Aço de Alta Resistěncia in Congresso de Pesquisa e Inovação da Rede Norte Nordeste de Educação Tecnológica" João Pessoa - PB. https://doi.org/10.11606/t.3.2009.tde-11082010-160030

Published

2014-09-30

How to Cite

Nobrega, J., Silva, D., Araujo, B., Melo, R., Maciel, T., Silva, A. and Santos, N. (2014) “Numerical evaluation of multipass welding temperature field in API 5L X80 steel welded joints”, The International Journal of Multiphysics, 8(3), pp. 337-348. doi: 10.1260/1750-9548.8.3.337.

Issue

Section

Articles